

How XML Schemas Simplify Dynamic Content Management

Sandeepan Banerjee, Director, Product Management Oracle Server Technologies.
(Dec 1999)

Introduction

Humans are adept at figuring out the meaning of a piece of content from a few hints
gathered from its structure. Going through a pile of papers on my desk, I can, after a brief
scan, determine which is a phone bill, which a bank statement, and what different interpretations
I need to apply to the rows of each so as to understand its contents. If I am in doubt, the phone
company or the bank often helpfully puts headings on columns to help me along -- 'Per Minute
Rate', 'Sub-Total', 'Debits' and so on.

Computers, sadly, are in need of even more explicit hints than us in order to be able to decipher
what things mean and how they are related. XML, insofar as it makes information self-describing
in simple ways, is a major breakthrough in helping programs process content intelligently.

XML has been enthusiastically adopted by the Internet community. It promises to solve two
important problems that all web users face: making web sites functionally richer and improving
network performance. XML can improve the ability of web sites to make sense of interactions
with users in a dynamic manner, by using the markup tags that define semantics of pages. HTML
is useful for marking up headlines and fonts, but useless in terms of deciding which piece on a
page is a Price. As a result, it is nearly impossible to use pricing information with your searches;
your interaction with the web is limited because the language which brings content to you knows
very little about the content. HTML is useful for painting documents onto your browser, but not
so useful for taking orders, transmitting medical records or monitoring instruments; change the
'Quantity' field in your order, and in order to see the few digits in the 'Total' that change as a
result, you ask a burdened server across a slow network to send you a brand-new, generated,
graphics-rich page. If structural and semantic information could be added using XML, your
browser (or cell-phone, or pocket planner) could do a great deal of processing on the spot. This
means you would not have to hit that network or that web server as often. With structural and
semantic information in Web pages, the Internet will be faster and friendlier

So far in the evolution of XML, a Document Type Definition (DTD) has been used to describe
this structural and semantic information. However, it is increasingly clear that there are certain
inherent limitations to DTDs, limitations which would make it hard for XML to assume the
increasingly dynamic, data- and content-oriented role thrust upon it. The World Wide Web
Consortium (W3C) has decided against pushing the current DTD standards anyfarther, and
chartered a new working group to come up with a standard XML Schema that makes it easier for
XML to address dynamic content

Shortcomings of DTDs

XML inherited the notion of DTDs from the Standard Generalized Markup Language (SGML).
SGML dealt primarily with 'document-like' structures -- theses, books, advertisement-copy, and
DTDs worked fine for representing these structures. XML, however, is rapidly expanding to
address Business-to-Business and Business-to-Consumer eCommerce, as well as Web-content

management. This brings into play dynamic interaction with databases, middleware, interprocess
communication -- as well as involvement with new areas such as finance, bio-informatics,
telecommunications.

A DTD-based XML document has two structures inside it -- the XML 'instance data' (i.e. the
contents marked up with tags just like HTML), and the DTD that describes rules about how the
instance data is set up.

For example, an XML instance fragment about a comment might look like:

 <Comment>Some text to serve as comment </Comment>

The DTD for this piece of XML might be:

 <!ELEMENT Comment (#PCDATA)* >

The DTDs have a syntax that is different from the XML instance. Consequently, parsers, tools
and programs dealing with DTDs have to implement the specific rules that govern DTDs.
Clearly, it would make sense to use the same syntax for DTDs. XML Schema allows models to
be written in XML, which lets the same programs that read the data also read the definition of the
data:

<type name ='Comment'> <ContentModel> <PCData/> </ContentModel>
</type>

So, programmers do not have to learn the abstruse #,* &] conventions that the DTDs
carried over from SGML. XML Schema can be parsed into a tree of nodes like any other XML
document. The XML DOM can then be used to navigate the schema. (The definition property on
the IXMLDOMNode interface returns thecorresponding element type or attribute type from the
schema.) Consider the following document:

<xmlpaper> <speaker> Sandeepan Banerjee </speaker> <topic> How
XML Schemas Simplify Dynamic Content Management </topic> <pages>
7 </pages> </xmlpaper>

Suppose we DOM parse the above document, and the variable 'doc' holds a pointer to the parsed
document. We can get the 'pages' node as the last child of doc, use the definition property on
'pages' to get the element type for pages, and then access any extended information present in the
schema, such as the page limit for papers:

 var pages = doc.documentElement.lastChild
 var pagesType = pages.definition;
 var pageLimit = pagesET.childNodes(1).text;

Another problem with DTDs is that they really do not provide support for 'typing' of data -- to a
DTD, an XML structure is a string of characters. This worked in the document-centric world of
SGML, but poses major problems when you try to model dynamic content that comes from
strongly typed systems such as databases. Consider the following:

 <Speed unit = 'mph'> 140 </Speed>
 <Speed unit = 'mph'> exceeds limit </Speed>

Clearly, the two cases would need different logic to handle them. In the absence of typing, an
XML parser validating Speed would conclude both were correct, and the burden of adding
program logic to deal with each case would fall on the developer. The XML Schema proposal
provides for data-type integrity and the maintenance of bound conditions (with some minor
scripting support.

DTDs are used today for expressing the relatively simple structures that are found in the
document-centric world. There is no support in DTDs for complex structural schemas. DTDs are
not well integrated with namespaces. Definition of incomplete constraints on the content of an
element type in not possible. Due to a lack of typing, DTDs do not provide the integration of
structural schemas with primitive data types. DTDs use content models to specify part-of
relations, but they only specify kind-of relations implicitly or informally. XML Schema proposes
to address these deficiencies.

Another advantage the XML Schema offers over DTDs is extensibility: XML Schema can be
refined and successive schema authors can add their own elements and attributes. You can add
additional constraints to the declaration of an element. This extensibility helps XML Schemas to
create 'open' content models -- additional elements and/or attributes can be present within an
element without one having to declare each and every element in the XML Schema. There are, of
course, limitations on what you can do to a schema as part of this open content model. You
cannot add/remove elements or attributes that will break the existing content model in some way.
For example, if a type is defined as a sequence of elements, valid extensions must preserve that
sequence before adding any 'open' content. Undeclared elements can be added only if they belong
to a different namespace. There are, of course, cases where an open content model is not desired.
You can always override the default and specify the content model as 'closed', in which case any
additional elements or attributes will not validate:

 <type name = 'signature' extendable = 'no'>

So we have seen some of the shortcomings of DTDs and how XML Schema proposes to alleviate
them. Next, we take a broader look at XML Schema and dynamic content.

XML Schema & Dynamic Content

More and more content -- whether in the worlds of eCommerce, Web publishing and syndication,
supervisory control, or application integration --is dynamic. Dynamic content -- especially that
driven from databases involving strongly typed data that must be handled in specific ways --
creates many more problems and opportunities for XML than DTDs can handle.

In the Web publishing world, a single page that displays local weather, stock quotes, horoscopes,
specific news channels based on user-preferences can involve dozens of queries made to
underlying databases and application servers. These queries are made via SQL, the standard
object-relational query language, or via some programmatic interface that ultimately calls SQL.
Since both SQL and programming languages such as Java are strongly typed, they return
information that possesses type, structure, constraints, relationships and so on. So the structural
and data typing aspects of XML Schema can help exploit generation of viewable documents from
databases.Let us look at some of these aspects.

Simple &Complex Types

XML Schema provides for type definitions that may be both 'simple' and 'complex'. Simple type
definitions provide for atomic types, such as 'integer', that can be applied to character data in an
instance document, whether it appears as an attribute value or the contents of an element.
Complex types, whose expression in XML documents consists of elements with attributes and/or
other elements, can also be defined.

Here is a specification for simple types conformant to a recent XML Schema draft:

<datatype basetype = NMTOKEN name = NMTOKEN schemaAbbrev =
NMTOKEN schemaName = CDATA> Content: (((minExclusive |
minInclusive) |(maxExclusive | maxInclusive) | (maxAbsoluteValue
, minAbsoluteValue) |encoding | enumeration | length | maxLength
| pattern | period | precision | scale)*) </datatype>

For example, you can define a simple datatype positiveInteger, and then define an attribute of
this type:

<datatype name='positiveInteger' basetype='integer'/>
<minExclusive> 0 </minExclusive> </datatype>

<attribute name='foo' type='positiveInteger'/>

A complex type allows far more. The specification for complex types might look like:

<type abstract = "yes" | "no" extendable = "yes" | "no" basetype
= NMTOKEN content = "textOnly" | "mixed" | "elemOnly" | "empty"
final = "yes" | "no" name = NMTOKEN schemaAbbrev = NMTOKEN
schemaName =CDATA> <-- Content: (restrictions , (any | element |
group)* , (attrGroup |attribute)*,anyAttribute)--></type>

Now, a complex type 'speed' may be defined as:

<type name = 'speed'>
 <element name = 'value'>
 <datatype basetype = 'number'>
 <minInclusive>0</minInclusive>
 </datatype>
 </element>
 <element name = 'unit' type = NMTOKEN'/>
 </element>
</type>

<element name='airspeed' type = 'speed'/>

<airspeed> <value> 123 </value> <unit> knots </unit>
 </airspeed>

Clearly, all this is much more sophisticated than DTDs. When dynamic data is generated from a
database, it is typically expressed in terms of a database type system. The most popular type
systems are SQL:92 and the recently adopted SQL:1999. SQL:92 provides for much richness in

data types -- such as NULL-ness, variable precision (e.g. NUMBER(7,2)), check constraints and
so on. SQL:1999 adds to the capabilities of database type systems by providing user-defined
types, inheritance, references between types, collections of types and so on. XML Schema can
capture a wide spectrum of schema constraints that go towards better matching generated
documents to the underlying type-system of the data.

The applicability of the rich schema constraints provided by XML Schema is not limited to data-
driven applications. There are more and more document-driven applications that exhibit dynamic
behavior. A simple example might be a memo, which is routed differently based on markup tags.
A more sophisticated example is a technical service manual for an intercontinental aircraft.
Based on complex constraints provided by XML Schema, one can ensure that the author of such
a manual always enters a valid part-number, and one might even ensure that part-number validity
depends on dynamic considerations such as inventory levels, fluctuating demand and supply
metrics, or changing regulatory mandates.

Type Hierarchies and Substitutability

In XML Schema, a type definition may identify another type as its supertype. By the provision of
an implicit supertype for all types not explicitly identifying a supertype, we get a single type
hierarchy. Further, substitutability goes hand-in-hand with inheritance -- any element that is
schema-valid as per the type declared for its tag, must also be schema-valid per any of that type's
supertypes. That is, if one type is constructed from another by adding new content structure (in
the ways permitted by inheritance) then the new type is substitutable for the old.

It is possible to restrict some of the permissions or obligations inherited from a supertype. In
such cases, since substitutability must bepreserved, only some kinds of restriction are
permissible. If the supertype is a simple type, the restrictions must each narrow the
corresponding facets of the inherited type, e.g. by reducing a range or removing members of an
enumeration. If the supertype is a complex type, then attributes may be restricted by adding
and/or fixing defaults, or by restricting the attribute's simple type. Restricting a content model is
also possible.

Any schema implicitly defines an ur-type, which is the basetype for all types, simple or complex,
which do not identify an explicit basetype. Here is an example of inheritance:

<type name = 'Item'> <element name = 'itemcode' type = 'string'>
</type>

<type name = 'TaxableItem' basetype = 'Item'> <element
name='taxrate' type = 'real'/> </type>

<element name = 'invoice' <type> ... <any tag='item' type =
'Item'> </type> </element>

<invoice> ... <item> ...</item> </invoice>

<invoice> ... <item xsd:type='TaxableItem'> ... <taxrate> 0.0825
</taxrate> </item> </invoice>

A subtype of the Item type is defined, adding a taxrate element to its required content. Two
schema-valid instances of an element are declared using a type wildcard with Item as base type;
one using that type itself, and therefore not requiring disambiguation, and one using the 'xsd:type'
attribute to indicate that it is using the TaxableItem type.

Why are inheritance and substitutability important for dynamic content? DTD mechanisms use
content models to specify part-of relations, but they only specify kind-of (i.e. inheritance)
relations implicitly or informally. Type-hierarchies with explicit kind-of relations make both the
understanding and maintenance of types easier.

In most dynamic content, structures are more complex than those in static content. Experience
with other interchange formats such as EDI has shown that even familiar notions like Purchase
Order can become quite complex by the time they have been captured in a standardized form.
Further, while the basic layout of a Purchase Order is easy to agree upon, most organizations find
that their specific case always has some idiosyncratic attribute that requires special processing.
Type hierarchies provide a solution is these cases; complexity can be mitigated by creating
appropriate basetype abstractions with different levels of inheritance, adding layers of additional
meaning. Second, a standard Schema can always to extended or restricted to suit a particular
idiosyncracy.

Taken together, complex type structures and substitutability facilitate exchange between loosely
coupled applications. Such exchange is currently hampered by the difficulty of fully describing
the exchange data model in terms of DTDs; data model versioning issues further complicate
interactions in Enterprise Application Integration (EAI) frameworks. When the data model is
represented by the more expressive XML Schema definitions, the task of mapping the exchange
data model to and from application internal data models is simplified.

Areas of Application

A number of areas in which XML Schema is especially suitable have been touched upon above.
Let us recapitulate the major ones:

1. eCommerce: In both Business-to-Business and Business-to-Consumer eCommerce, data
is largely dynamic. XML Schema maps robustly to server-driven data models such as
SQL:1999, which provides user-defined types, inheritance, references between types,
collections of types etc. Libraries of schemas define business transactions within markets
and between parties. XML Schema validates a business document, and also provides
access to its information set.

2. Web Publication and Syndication: The key to syndication on the web is in highly
customizable distribution between publishing and syndication services. Collections of
XML documents with complex relations (cross-references, kind-of) among them will be
the norm. Protocols such as ICE, which are built on XML, will be able to take advantage
of the complex structural aspects of XML Schema.

3. EAI: The essence of an EAI hub-and-spoke architecture is in dynamic data exchange
between loosely coupled applications. DTDs cannot fully describe today's exchange data
models. XML Schema is a big step forward -- its capability for metadata interchange is
not only an EAI simplifier, but also an important optimization technology, as discussed
below.

4. Process Control and Data Acquisition: In multi-vendor, distributed systems such as those
in plant automation, security, devices, traffic routing etc., XML Schema can aid outgoing
and incoming message validity. Controllers can determine which parts of messages they
understand: when to ignore information and when to raise errors.

Optimization

Loose coupling between systems leads to all sorts of optimization issues. XML opens up the
possibility of dynamic optimizations made on the basis of self-describing servers. A given
database can emit a schema of itself to inform other systems what counts as legitimate and useful
queries. Any query interface can inspect XML schemas to guide a user in the formulation of
queries. There are a number of initiatives in the interchange of metadata (especially for database
systems) and in the use of metadata registries to facilitate interoperability of database design,
DBMS, query, user interface, data warehousing, and report generation tools. Examples include
the ISO 11179 and ANSI X3.285 data registry standards, and OMG's proposed XMI standard.
DTDs were inadequate for fully expressing database metadata; the new datatypes proposed by
XML Schema, as well as the set of schema constraints the XML Schema will provide will enable
dynamic description of database and run-time tuning and optimization of queries.

Another important kind of optimization will help cut down network traffic. Consider a case
where someone is trying to book movie tickets using a cellphone. If you go to an on-line ticketing
service and ask for all the popular movies showing in your area, you will likely get a long list that
does not fit into the form factor of your cellphone display -- that is, you would get a long list that
you would have to scroll up and down to inspect. To shorten this list, you need to fine-tune your
showtime or your preferred movie title. In order to do this, you would have to send a request
across the Web to your ticketing service and wait for a response. If, however, the list of movies
in the area had been sent in XML, using XML Schema to express all the constraints about
location, number of tickets available, earliest and latest showtimes, then the ticketing service you
send a simple Java program along with the data that could refine and sort your choices in
milliseconds, without incurring multiple network hits. Since the richness of XML Schema is
comparable to programming languages, you can exploit additional processing of richly described
structures at various clients. This helps dynamic content to be used with greater efficiency across
scarce network resources.

 Conclusion

The XML Schema proposal currently under deliberation by W3C adds significantly to the
current DTD mechanism. XML Schemas can be used for constraining document structure
(elements, attributes, namespaces) as well as content (datatypes, entities, notations); the
datatypes themselves can either be primitive (such as bytes, dates, integers, sequences, intervals)
or be user-defined (including ones that are derived from existing datatypes and which may
constrain certain properties -- range, precision, length, mask -- of the basetype.) Application-
specific constraints and descriptions are allowed. XML Schema provides inheritance for element,
attribute, and datatype definitions. Mechanisms are provided for URI references to facilitate a
standard, unambiguous semantic understanding of constructs. The schema language provides for
embedded documentation or comments. The overall type system maps very well to databases and
the object-relational SQL:1999 standard, promising significant improvements in dealing with
dynamic data generated from database systems and loosely coupled EAI frameworks.

