
Implementing XML Schema inside a ‘Relational’ Database
Sandeepan Banerjee

Oracle Server Technologies
500 Oracle Pkwy

Redwood Shores, CA 94065, USA
+ 1 650 506 7000

Sandeepan.Banerjee@Oracle.com

ABSTRACT
XML Schema has emerged as a promising data model that unites
structured and unstructured content. The Oracle database has led
the commercial database community in integrating support for
XML Schema inside an enterprise data server. The foundation for
this was laid with the absorption of the SQL:1999 'object-
relational' type system in the database, which provided the
necessary hierarchical abstractions necessary for representing
XML. We look at how XML Schemas have been implemented in
Oracle XML DB, what optimizations are available to cover the
diverse use-cases for schema-based XML storage and retrieval,
and how this technology contributes to richer data management.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages – Data description
languages (DDL), Data manipulation languages(DML), Database
(persistent) programming languages, Query languages

General Terms

Standardization, Languages, Management.

Keywords
XML Schema, SQL:1999, Relational, Object-Relational, DOM
Fidelity, Query-Optimization, XPath, Indexing.

1. INTRODUCTION
Early adopters of XML exploited the standard’s core
characteristics of self-description and ad-hoc extensibility for the
flexible transportation of messages between applications. The
second generation of XML standards such as XML Schema
expanded the scope of XML technologies beyond data- or
instruction-interchange. XML Schema is the first data model that
can be used to represent both unstructured ‘documents’ and
structured ‘data’.

Today, applications store data in a relational database and
documents or web content in a file system. XML is used mostly
as an artifact for transport, generated from a database or a file-
system. As the volume of XML being transported grows, and
developers consider the costs of constant regeneration of XML
documents, there arises the question whether these storage
methods can effectively accommodate XML content. From these
considerations, it becomes clear that XML Schema is an
important model for databases to absorb, so that the core

capabilities of strong relational management can be extended to
all kinds of data, and also so that both storage and generation of
XML can be done with the efficiencies that accrue from
understanding the structure of XML.

2. XML SCHEMA
The W3C Schema Working Group has published a specification
of XML Schema to provide a means for defining the structure,
content and semantics of XML documents. The XML Schema
language is an improvement over DTDs in that it provides strong
typing of the elements and attributes, uses XML syntax for its
specification, can address content-models (mixed content, exact
number of occurrences of elements, named group of elements), is
extensible and self-documenting. Its type system is rich, defining
47 scalar data types, and this base set of data types can be
extended using techniques like inheritance and extension to define
more complex types. Sequences and collections are supported.
URN-based Namespaces can be used to disambiguate names.
XML Schemas can be designed to be variable -- supporting
optional attributes, optional and repeated elements, and choices
from alternatives of multiple elements.

The XML Schema type system is rich enough to address
‘structured’ relational data (i.e. where the structure of each item is
regular, collections are homogeneous, and the terminal data-items
consist of scalar values) as well as ‘unstructured’ documents
(where the structure is flexible, and the document interleaves
some data with regular structure and large portions of un-typed
annotations or text which has irregular structure.) In addition,
XML Schema can be used to specify semi-structured documents
(in whom structure exists, but this structure is variable between
instances.)

Storing and retrieving XML Schema-based documents in a
‘relational’ database presents a number of novel challenges.

� Preservation of the XML Document Object Model: The

tuples in a relational system have to inherent ordering.
However, the relative ordering of elements in an XML
documents (say paragraphs in a chapter) can be an important
part of the semantics of the document. In addition, constructs
like namepsaces cannot be easily mapped to relational tables.
These differences between what XML Schemas can represent
and what basic relational models allow, can result in loss of
fidelity as part of storing XML Schema-based documents in
relational storage.

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

� Efficient access of mixed or variable content: Relational
solutions have addressed indexing of structured data. However

mailto:Sandeepan.Banerjee@Oracle.com

efficient access of unstructured or variable content is an
important issue.

� Application of constraints and semantic rules: XML
Schemas can specify not only the structure but also semantics
and business rules of certain kinds. It is important to be able to
constrain Schema-based documents to all the semantics in the
Schema, and not just the structural ones.

� Evolution of Schemas: Schemas allow for variability and
extensibility, and can also change over time in an operational
context. A system that supports XML Schemas should be able
to handle schema evolution

� Global and Local elements: Element of an XML schema can
be local or global. Global elements are children of the root
schema element. Local elements are nested inside schema
structure and not direct child of schema element.

� Efficient storage and materialization: XML document
instances are relatively large for the amount of information they
contain (due to the extra overhead of markup and conversion of
all information into characters), and the Document Object
Model relatively inefficient in terms of memory consumption.
For such documents to be scalably stored and processed it is
important to use the information latent in XML schemas for
efficient storage and retrieval.

While a full discussion of the resolution of all the above issues
relating to the ‘impedance mismatch’ between XML Schema and
the relational model would exceed the scope of this paper, we will
look at the significant aspects of absorbing XML Schemas into an
extended-relational model.

For a number of years, the relational model of the SQL standard
has been hybridizing to include complex structures and
variability. This is often called object-relational technology, is
captured in the SQL:1999 standard [1], and has served to
converge the standard relational and XML data models. We look
at the basic constructs of Oracle’s SQL:1999 style object-
relational implementation.

3. OBJECT-RELATIONAL TECHNOLOGY
Historically, applications have focused on accessing and
modifying corporate data that is stored in tables composed of
native SQL data types such as INTEGER, NUMBER, DATE, and
CHAR. In Oracle, there is support not only for these native types,
but also for new user-defined or system-generated ‘object’ data
types that support composition, aggregation, encapsulation,
inheritance, identity-based reference semantics and so on.

Oracle allows users to treat object data relationally and relational
data as objects. For example, users can use SQL to query on
object data in the same way that they access relational data.
Users can access an object (using SQL DML for the query), the
object types attributes and methods, with extended path
expressions. They can also use SQL to perform explicit joins
between objects in tables. In addition, Oracle lets users perform
implicit joins between objects, by traversing or navigating
references from one object to the other. Object types are
indexable. Object types can be instantiated in identity-preserving
‘object’ tables, or used as datatypes of columns in relational
tables. In addition, Object Views allow the synthesis of ‘virtual’
objects from data that continues to be stored in relational tables.

Oracle supports the single type inheritance model with
substitutability of objects and references. View hierarchies can
also be constructed. Oracle also supports collection types.
Collections are SQL data types that contain multiple elements.
Each element or value for a collection has the same substitutable
data type. In Oracle, there are two collection types – Varrays and
Nested Tables.

A Varray contains a variable number of ordered elements. Varray
data types can be used as a column of a table or as an attribute of
an object type.

Using Oracle SQL, a (named) table type can also be created.
These can be used as Nested Tables to provide the semantics of
an unordered collection. As with Varray, a Nested Table type can
be used as a column of a table or as an attribute of an object type.
Oracle supports multiple levels of nesting within collections, e.g.
Nested Tables or Varrays embedded within a Nested Table or
Varray.

Oracle provides the large object (LOB) types to handle the
storage demands documents or multimedia. Large objects are
stored in a manner that optimizes space utilization and provides
efficient access. More specifically, large objects are composed of
locators and the related binary or character data. The LOB
locators are stored in-line with other table record columns. In case
of internal LOBs (BLOB, CLOB, and NCLOB) the data can
reside in a separate storage area. However, for external LOBs
(BFILEs), the data is stored outside the database in operating
system files. Full text keyword indexes (which can exploit any
XML markup that exists) can be builds on CLOBs or BFILEs.

Object types can be evolved, including adding an attribute to a
type, dropping an attribute from a type. Modifying the type of an
attribute by increasing its length, precision, or scale, as well as
adding or dropping a method to a type.

What is immediately apparent is the number of parallels that exist
between XML Schema and the SQL:1999 object model. Simple
and complex XML types can be captured as object types; the
notion of inheritance and substitution groups can be mapped;
ordered collections can be specified; mixed content achieved
using LOBs – and so on. The object-relational infrastructure is
used to harmoniously absorb XML Schemas in Oracle’s XML DB
implementation.

4. XML SCHEMAS IN ORACLE XML DB
An XML Schema document, with certain additional attributes
defined by our XML DB implementation, is used to describe the
storage mappings, in-memory representations and language
bindings of XML documents that conform to the schema. The
process of compiling the XML Schema (referred to as schema
registration) creates the appropriate storage structures (in terms of
SQL:1999 object-relational types and tables). The example below
shows the default storage structures created for the XML schema
po.xsd, which describes the canonical purchase-order with
associated line items.

In the example shown in Table 1, the object type Item_T is
created corresponding to the local Item complexType. An
additional collection (an Oracle Varray) type Item_COLL is

created because there can be more than one occurrence of Item
(maxOccurs > 1). The object type PurchaseOrderType_T
corresponds to the local PurchaseOrder complexType. The
simple types referenced in the XML Schema are mapped to
appropriate SQL datatypes. A registered schema can then be
referred to within a CREATE TABLE statement. This results in
the underlying SQL types being used to create the columns of the
table. In addition, a second table is created to hold the collection
of Items. A foreign key is used to associate the Item rows with
the corresponding parent “PurchaseOrder” row.

When a XML document is inserted into the XMLType table, it is
appropriately shredded and values inserted into the underlying
columns. In case of collections stored in separate tables, one or

more rows get inserted into these nested tables. Table 2 below
shows an instance document and the values in the top level and
nested tables.

Note the presence of array_index column in the nested table. This
system column of NUMBER datatype tracks the ordering of
elements within a collection. When new elements are inserted into
the middle of existing collections, the array_index range is
subdivided to compute new values. For example, an entry to be
inserted between [1, …] and [2, …] is assigned array_index = 1.5
viz. (1+2)/2. This enables entries to be inserted and deleted within
collections without affecting other entries. Multiple levels of
nesting are handled in XML DB by either creating embedded
object types or embedded collection types. If the maxOccurs of a
nested complexType is 1, the corresponding object type is
embedded within the parent object type. If maxOccurs > 1, a
collection type is created and embedded within the parent object
type. Further, these multiple levels of collections are stored in
multiple tables with foreign keys associating rows with their
parent row. Each nested table has an array_index column to track
the ordering of elements within the specific collection.

Table 1: An XML Schema and Corresponding SQL Types

<schema
targetNamespace=http://www.oracle.com/PO.xsd
xmlns:po=”http://www.oracle.com/PO.xsd”
elementFormDefault=”qualified”
xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="PurchaseOrderType">
 <sequence>
 <element name="PONum" type="decimal"/>
 <element name="Company">
 <simpleType>
 <restriction base="string">
 <maxLength value="100"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Item" maxOccurs="1000">
 <complexType>
 <sequence>
 <element name="Part">
 <simpleType>
 <restriction base="string">
 <maxLength value="1000"/>
 </restriction>
 </simpleType>
 </element>
 <element name="Price" type="float"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <element name="PurchaseOrder"
type="po:PurchaseOrderType"/>
</schema>

SQL Object Types
TYPE "Item_T"
(
 part varchar2(1000),
 price number
);

TYPE "Item_COLL" AS
varray(1000) OF "Item_T";

TYPE "PurchaseOrderType_T"
(
 ponum number,
 company varchar2(100),
 item Item_varray_COLL
);

XMLType Table & Nested table
TABLE po_tab OF XMLTYPE
XMLSCHEMA " PO.xsd"
ELEMENT "PurchaseOrder"
VARRAY(xmldata.item) STORE AS
item_tab;

http://www.oracle.com/PO.xsd
http://www.oracle.com/PO.xsd

5. DOM FIDELITY
In general, any technique that involves shredding XML
documents to relational storage loses the fidelity of the document
in terms of one or more of the following aspects:
� whitespaces between elements and between attributes
� ordering of elements
� comments within the XML document
� processing instructions
� namespaces declarations
� element and attribute prefixes

Ordering of elements is highly relevant in many applications.

However, the XML Schema may not constrain the order of
elements (for example, using <choice> or <all> model groups).
Since many of these elements may be flattened into a single row
of a table, the relative ordering of these elements is not tracked.

Oracle XML DB supports fidelity of documents with respect

to their DOM (Document Object Model) i.e. an application that
uses the DOM API to traverse the XML document will find that
the input document is identical to the output DOM. This
corresponds to all the aspects listed above except (1).

To ensure DOM fidelity, XML DB adds a system binary
attribute to each created object type. This attribute is referred to as
the positional descriptor – which stores (in a binary encoded
format) all pieces of information that cannot be stored in any of
the other structured attributes. The encoded information includes:
� Ordering of elements
� Comments
� Processing Instructions
� Namespace declarations
� Prefix information
This information is carried in a hidden attribute and maintained
for all DDL and DML operations. As a result, XML DB provides
DOM fidelity, i.e. the XML DOM that is stored is the DOM that
is retrieved with no loss of information.

Table 2: Handling Collections in XML Schemas
<PurchaseOrder
 xmlns="http://www.oracle.com/PO.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:schemaLocation="http://www.oracle.com/PO.xsd
http://www.oracle.com/PO.xsd">
 <PONum>1001</PONum>
 <Company>Oracle Corp</Company>
 <Item>
 <Part>9i Doc Set</Part>
 <Price>2550</Price>
 </Item>
 <Item>
 <Part>8i Doc Set</Part>
 <Price>350</Price>
 </Item>
</PurchaseOrder>

PO_TAB

Row ID ponum Company

1 1001 Oracle
Corp

ITEM_TAB

Parent
ROW ID

Array
Index

part price

1 1 9i
Doc
Set

2250

1 2 8i
Doc
Set

350

6. HYBRID STORAGE MAPPINGS
Oracle XML DB supports a complete spectrum of storage
mappings. At one end of the spectrum is “full shredding” – as
shown in the first example. Every attribute and simple element
value is stored in a separate column of some table. All collections
are stored in a separate table from the parent table using a foreign
key association. At the other end of the spectrum, XML DB also
supports “packed storage” i.e. the entire XML document is stored
in a single LOB.

A novel aspect of Oracle XML DB is that it also supports any
intermediate mapping (semi-structured) of the XML Schema – by
defining certain portions of the XML document to be “shredded”
while storing other fragments in LOBs. This is referred to as the
hybrid storage mapping. The hybrid storage is accomplished by
specifying the XDB attribute SQLType within the
corresponding <complexType> declaration. In the following
example, the XML schema specifies that the Addr fragment is
stored as a CLOB while the other elements and attributes are
shredded.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.oracle.com/emp.xsd"
 xmlns:emp="http://www.oracle.com/emp.xsd"
 xmlns:xdb="http://xmlns.oracle.com/xdb">

<complexType name = "Employee">
 <sequence>
 <element name = "Name" type = "string"/>
 <element name = "Age" type = "decimal"/>
 <element name = "Addr" xdb:SQLType = "CLOB">
 <complexType >
 <sequence>
 <element name = "Street" type = "string"/>
 <element name = "City" type = "string"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>
</schema>

Table 3: Handling Cyclic Definitions
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="SectionT">
 <xs:sequence>
 <xs:element name="title"
type="xs:string"/>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="body"
type="xs:string"/>
 <xs:element name="section"
type="SectionT"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

type SECTION_T
(
 title varchar2(4000),
 body VARRAY OF VARCHAR2(4000),
 section VARRAY OF REF SECTION_T
);

Table 4: Extensions
<xs:schema
 xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
 <xs:complexType name="Address">
 <xs:sequence>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="USAddress">
 <xs:complexContent>
 <xs:extension base="Address">
 <xs:sequence>
 <xs:element name="zip" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="IntlAddress">
 <xs:complexContent>
 <xs:extension base="Address">
 <xs:sequence>
 <xs:element name="country"
type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:schema>

type ADDR_T
(
 street varchar2(4000),
 city varchar2(4000)
);

type USADDR_T
under ADDR_T
(
 zip varchar2(4000)
);

type INTLADDR_T
under ADDR_T
(
 country varchar2(4000)
);

http://www.w3.org/2001/XMLSchema

Table 5: XPath Expressions

Simple XPath expressions:
/PurchaseOrder/@PurchaseDate
/PurchaseOrder/Company

Involves traversals using
child and attribute axis.
Rewritten as traversals
over object type
attributes, where the
attributes are simple
scalar or object types.

Collection traversal expressions:
/PurchaseOrder/Item/Part

Involves traversal of
collection expressions
using child and attribute
axes. Rewritten as joins
with the appropriate
nested tables.

Predicates: [Company="Oracle"] Predicates in the XPath
are rewritten into SQL
predicates.

List indexes: lineitem[1] Indexes are rewritten to
access the n'th item in a
collection.

The hybrid storage option is particularly useful when certain
parts of the XML document are seldom queried and are mostly
retrieved and stored in their entirety. By storing the XML
fragments as LOBs, the additional overheads of decomposition
and re-composition are avoided.

7. Complex XML Schemas
Some more complex XML Schema constructs and the
corresponding structured mappings are discussed next.

XML Schemas can have cyclic definitions. A complexType can
be defined directly or indirectly in terms of itself. Similarly, the
definition of an element can contain a reference back to itself.
Such cyclic definitions are supported in XML DB by
introducing a REF(reference) attribute at the point of cycle
completion. The REF value(s) point at XML fragments that
could be stored in the same or different tables, as shown in
Table 3.

Two other important constructs are extension and restriction. A
complexType can be declared as a derivation of another global
complexType. The derived complexType is mapped as a
subtype of the object type corresponding to the parent
complexType. In case of derivation by extension, the subtype
has extra attributes corresponding to the newly added elements
and attributes in the derived complexType. In case of derivation
by restriction, the subtype is empty and the restriction

semantics are enforced during schema validation. These are
shown in Table 4.

8. XML Queries
The XML data stored in a schema-based XMLType table or
column can be queried using XPath operators. Support for the
XML Query is awaiting completion of the W3C standardization
process for that standard, so we will confine our discussion to
XPath. XML Query is not expected to be handled any
differently.

Specifically, Oracle XML DB provides two operators:
� existsNode : tests for the presence of a node satisfying the

given XPath
� extract : retrieves the document fragment identified by the

XPath
One of the major benefits of structured storage in XML DB is
that queries involving XPath over XML data are rewritten into
SQL operators over the underlying columns, This then enables
BTree, bitmap and other index access paths to be chosen by the
query optimizer. Thus XPath operators can be evaluated against
large collections of large XML documents without having to
ever construct documents (DOM) in memory. For example a
query such as:

SELECT * FROM po_tab p

WHEREexistsNode(value(p),
'/PurchaseOrder[Company=Oracle]');

is rewritten to:

SELECT * FROM po_tab p

 WHERE p.company = 'Oracle';

Table 5 above lists the flavors of XPath expressions that can be
translated into equivalent underlying SQL queries.

9. ACKNOWLEDGEMENTS
A number of individuals at Oracle -- Vishu Krishnamurthy,
Ravi Murthy, Eric Sedlar, Susan Kotsovolos, Nipun Agarwal,
Paul Dixon, Chung-Ho Chen, Subramanian Murlidhar, Mark
Drake and many others in their groups have contributed to the
development of this technology.

10. REFERENCES
[1] The SQL:1999 Standard, ISO/IEC 9075-n:1999,

Published by INCITS, http://www.ncits.org.

	INTRODUCTION
	XML SCHEMA
	Storing and retrieving XML Schema-based

	OBJECT-RELATIONAL TECHNOLOGY
	XML SCHEMAS IN ORACLE XML DB
	DOM FIDELITY
	HYBRID STORAGE MAPPINGS
	Complex XML Schemas
	XML Queries
	ACKNOWLEDGEMENTS
	REFERENCES

