XML Schemas in Oracle XML DB

Ravi Murthy, Sandeepan Banerjee

Oracle Corporation
500 Oracle Pkwy
Redwood Shores, USA
{Ravi.Murthy, Sandeepan.Banerjee} @Oracle.com

Abstract

The W3C XML Schema language is becoming
increasingly popular for expressing the data
model for XML documents. It is a powerful
language that incorporates both structural and
datatype modeling features. There are many
benefits to storing XML Schema compliant data
in a database system, including better
queryability, optimized updates and stronger
validation. However, the fidelity of the XML
documents cannot be sacrificed. Thus, the
fundamental problem facing database
implementers is: how can XML Schemas be
mapped to relational (and object-relational)
databases without losing schema semantics or
data-fidelity? In this paper, we present the Oracle
XML DB solution for a flexible mapping of
XML Schemas to object-relational databases. It
preserves document fidelity, including ordering,
namespaces, comments, processing instructions
etc., and handles all the XML Schema semantics
including cyclic definitions, derivations
(extension and restriction), and wildcards. We
also discuss various query and update
optimizations that involve rewriting XPath
operations to directly operate on the underlying
relational data.

1. Introduction

Early adopters of XML exploited the standard’s core
characteristics of self-description and ad-hoc extensibility
for the flexible transportation of messages between
applications. The second generation of XML standards

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment

Proceedings of the 29" VLDB Conference,

Berlin, Germany, 2003

such as XML Schema expanded the scope of XML
technologies from interchange to modelling and storage.
XML Schema is the first data model that can be used to
represent both unstructured ‘documents’ and structured
‘data’.

Today, applications store data in a relational database and
documents or web content in a file system. XML is used
mostly as an artefact of transport, generated from a
database or a file-system. As the volume of XML being
transported grows, and developers consider the costs of
constant regeneration of XML documents, there arises the
question whether these storage methods can effectively
accommodate XML content. Fidelity of storage to the
XML original is critical for many cases including
document exchange. For example, ordering of elements
is highly relevant in many applications. However, the
order of elements in an XML document may not be
constrained by the XML Schema declaration (for
example, using <choice> or <all> model groups within
XML Schema allows elements to appear in any order). In
a simple relational mapping, since many of these elements
may be flattened into a single row of a table, the relative
ordering of these elements is not tracked. Further, uniform
queryability is desired over XML whether it be data-
oriented or content-oriented. From these considerations,
it has become clear that insofar as XML Schema is an
important model for databases to absorb (so that the core
capabilities of strong relational management can be
extended to all kinds of data, and also so that both storage
and generation of XML can be done with the efficiencies
that accrue from understanding the structure of XML), the
relational paradigm needs to be enhanced to efficiently
handle XML. This is a core thrust of Oracle XML DB.

2. XML Schema

The W3C Schema Working Group has published a
specification of XML Schema to provide a means for
defining the structure, content and semantics of XML
documents [1]. The XML Schema language is an
improvement over DTDs in that it provides strong typing
of the elements and attributes, uses XML syntax for its

specification, can address content-models (mixed content,
exact number of occurrences of elements, named group of
elements), is extensible and self-documenting. Its type
system is rich, defining a large number of scalar data
types, and this base set of data types can be extended
using techniques like restriction, composition, and
extension to define more simple and complex types.
Sequences and collections are supported. URN-based
namespaces can be used to disambiguate names. XML
Schemas can be designed to be variable -- supporting
optional attributes, optional and repeated elements, and
choices from alternatives of multiple elements.

Oracle has introduced a new datatype for handling XML
data, called XMLType [2, 8]. This datatype can be used to
define columns of tables and views, arguments to stored
procedures and other places where a native datatype could
be used. XMLType defines a rich set of XML operators
to extract, transform and validate XML data. However,
the datatype does not dictate the storage option used to
store XML data. In fact, it is designed to accommodate a
variety of storage choices, from completely unstructured
to highly structured storage. This paper presents the XML
Schema-based structured storage option for XMLType.
The key benefits of this solution are:
¢ Full enforcement of XML Schema semantics
e Support for XML document fidelity
¢ Compact XML Storage by avoiding tag
overheads
e Efficient queryability by rewriting XPath queries
» Efficient updates of portions of XML documents
by rewriting update operations

Before we look at how XML data conforming to XML
Schemas are stored in Oracle XML DB, we briefly
recapitulate the ANSI SQL:1999 [3] style Object-
Relational technology that is used as infrastructure for
high-fidelity XML storage and retrieval in Oracle.

3. Object-Relational Technology

Historically, applications have focused on accessing and
modifying corporate data that is stored in tables composed
of native SQL data types such as INTEGER, NUMBER,
DATE, and CHAR. In Oracle, there is support not only
for these native types, but also for new user-defined or
system-generated ‘object’ data types that support
composition, aggregation, encapsulation, inheritance,
identity-based reference semantics and so on.

Oracle allows a user to treat object data relationally and
relational data as objects [4]. For example, users can use
SQL to query on object data in the same way that they
access relational data. Users can access an object (using
SQL DML for the query), the object types attributes and
methods, with extended path expressions. They can also
use SQL to perform explicit joins between objects in
tables. In addition, Oracle lets users perform implicit

joins between objects, by traversing or navigating
references from one object to the other.

Object types are indexable. Object types can be
instantiated in identity-preserving ‘object’ tables, or used
as datatypes of columns in relational tables. In addition,
Object Views allow the synthesis of ‘virtual® objects from
data that continues to be stored in relational tables. Oracle
supports the single type inheritance model with
substitutability of objects and references. View
hierarchies can also be constructed. Oracle also supports
collection types. Collections are SQL data types that
contain multiple elements. Each element or value for a
collection has the same substitutable data type. In Oracle,
there are two collection types — Varrays and Nested
Tables. A Varray contains a variable number of ordered
elements. Varray data types can be used as a column of a
table or as an attribute of an object type.

Using Oracle SQL, a (named) table type can be created.
These can be used as Nested Tables to provide the
semantics of an unordered collection. As with Varray, a
Nested Table type can be used as a column of a table or as
an attribute of an object type. Oracle supports multiple
levels of nesting within collections, e.g. Nested Tables or
Varrays embedded within a Nested Table or Varray.
Oracle provides large object (LOB) types to handle the
storage demands of documents or multimedia. Large
objects are stored in a manner that optimizes space
utilization and provides efficient access. Large objects are
composed of locators and the related binary or character
data. The LOB locators are stored in-line with other table
record columns. In case of internal LOBs (BLOB, CLOB,
and NCLOB) the data can reside in a separate storage
area. However, for external LOBs (BFILEs), the data is
stored outside the database in operating system files. Full
text keyword indexes (which can exploit any XML
markup that exists) can be built on CLOBs or BFILEs.

Object types can be evolved, including adding an attribute
to a type, dropping an attribute from a type, modifying the
type of an attribute by increasing its length, precision, or
scale, as well as adding or dropping a method to a type.
What is immediately apparent is the number of parallels
that exist between XML Schema and the SQL:1999 object
model. Table 1 lists some of the common constructs.

Table 1 : Comparison of XML Schema and SQL99

XML Schema Construct SQL99 Construct
ComplexType Object Type

Local ComplexType with Embedded Object Type
maxOccurs = 1

ComplexType with Collection Type
maxOccurs > 1

Derived ComplexType Subtype

XML Schema scalar type SQL primitive type

4. Oracle and XML Schema

An XML Schema document with additional attributes
defined by Oracle XML DB is used to describe the
storage mappings, in-memory representations and
language bindings of XML documents that conform to the
Schema. The process of compiling the XML Schema
(referred to as schema registration) creates the appropriate
object-relational storage structures. Table 2 shows the
default storage structures automatically created in Oracle
XML DB for the sample ‘purchase order’ XML schema
po.xsd.

Table 2 : Example XML Schema Mapping

XM.Type Table & Nested table

TABLE po_tab OF XMLTYPE
XMLSCHEMA " PO. xsd"

ELEMENT " Pur chaseOrder"”
VARRAY(iten) STORE AS item tab;

XML Schema (po.xsd)

<schem
t ar get Nanespace=htt p: // ww. or acl e. conl PO. xsd
xm ns: po="http://ww. oracl e. conl PO. xsd”
el ement For nDef aul t =" qual i fi ed”
xm ns="http://wwm. w3. or g/ 2001/ XM_Schema" >
<conpl exType name="PurchaseOr der Type" >
<sequence>
<el ement nane="PONuni type="decinal"/>
<el ement nane="Conpany" >
<si npl eType>
<restriction base="string">
<maxLengt h val ue="100"/>
</restriction>
</ si npl eType>
</ el enent >
<el ement nane="Itent' naxCccurs="1000">
<conpl exType>
<sequence>
<el ement nanme="Part">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="1000"/>
</restriction>
</ si npl eType>
</ el ement >
<el ement nanme="Price" type="float"/>
</ sequence>
</ conpl exType>
</ el enent >
</ sequence>
</ conpl exType>

<el ement nane="Pur chaseOrder"
t ype="po: Pur chaseOr der Type"/ >
</ schenma>

The object type “Item_T” is created corresponding to the
“Item” (local) complexType. An additional collection
(varray) type “Item_COLL” is created because there can
be more than one occurrence of Item (maxOccurs > 1).
The object type “PurchaseOrderType T” corresponds to
the “PurchaseOrder” (local) complexType. The simple
types referenced in the XML Schema are mapped to
appropriate SQL datatypes. E.g. The XML Schema
primitive types string, decimal and date are mapped to
SQL VARCHAR?2, NUMBER and DATE types
respectively. The constraints specified in the XML
Schema such as the maximum length of a string element
are preserved in the SQL attribute definitions. For
example, “Company” is defined as an attribute of type
VARCHAR?2 with a maximum length of 100 characters.
A registered schema can then be referred to within a
CREATE TABLE statement. This results in the
underlying SQL types being used to create appropriate
columns of the table. In addition, a second table is created
to hold the collection of “Items”. A foreign key is used to
associate the Item rows with the corresponding parent
“PurchaseOrder” row.

When a XML document is inserted into the XMLType
table, it is appropriately shredded and the values inserted
into the underlying columns. In the case of collections
stored in separate tables, one or more rows get inserted
into these nested tables. Table 3 shows an instance
document and the values in the top level and nested
tables.

Table 3 : Example XML Instance Document

XML Instance Document

SQL Object Types

TYPE "ltem T"

(
part varchar2(1000),

price nunber

);

TYPE "Item COLL" AS
VARRAY(1000) OF "ltem T";

TYPE "Pur chaseOr der Type_T"
(
ponum nunber,
conpany var char 2(100),
itemltem COLL

);

<Pur chaseOr der
xm ns="http://ww. oracl e. com PO. xsd"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schera-
i nst ance"
xsi : schemaLocati on="http://wwm. oracl e. conf PO xsd
http://ww. oracl e. conf PO. xsd" >
<PONun®1001</ PONun®
<Conpany>Or acl e Cor p</ Conpany>

<ltenr
<Part>9i Doc Set</Part>
<Pri ce>2550</ Pri ce>
</ltenp
<ltenr
<Part>8i Doc Set</Part>
<Pri ce>350</Pri ce>
</ltenp
</ Pur chaseOr der >
PO_TAB
Row | D ponum Conpany
1 1001 O acle
Cor p

| TEM TAB

Par ent Array | part price
RONID | I ndex
1 1 9i 2250
Doc
Set
1 2 8i 350
Doc
Set

4.1 Validation of XML Schemas

The XML schema document is used both for enforcing
schema constraints (in terms of validating the input
documents) and also as the source of mapping
information that describes how the instances of the XML
documents are stored in the database. When instance
documents are inserted into a table conforming to an
XML Schema, the instance is validated against the
schema. In addition, the mapping information in the XML
Schema is used to shred the document and store it in the
appropriate table(s).

When a XML Schema is registered in Oracle, it is given a
name (could be any arbitrary URL). The instance
document refers to its XML schema using the
xsi:schemalocation attribute. The value of this special
attribute consists of pairs of namespace URLs and schema
URLs. The schema URL corresponding to the namespace
of the root element identifies the XML schema that is then
used for validation and shredding purposes.

4.2 Storage of Collections

When XML is stored in structured format, all simple
elements and attributes appearing as direct children of the
root element are stored as columns in the root row.
Further, nested complex elements and attributes that can
occur utmost once (maxOccurs = 1) are also stored as
columns in the parent row. However, in the case of
elements that can occur more than once (maxOccurs > 1),
referred to as collections, there are multiple storage
options supported by XML DB.

One option stores the entire collection in a single binary
column — referred to as the in-lined storage of collections.
The other option is to store collections in a separate
nested table which contains one row per collection item.
The rows of the nested table contain the key of the parent
row. In addition users can specify if they want to preserve
the original ordering of the items of a collection. If
collection item order needs to be preserved, an additional
system column called array _index is added to the nested
table. This column of NUMBER datatype tracks the
ordering of elements within a collection. When a new
collection with N items is inserted, the array index of
these items are assigned values 1... N. When new

elements are inserted into the middle of existing
collections, the array index range is subdivided to
compute new values. For example, an entry to be inserted
between [1, ...] and [2, ...] is assigned array_index = 1.5
viz. (14+2)/2. This enables entries to be inserted and
deleted within collections without affecting other entries.

The in-lined storage option has lesser overhead in terms
of insert and retrieval processing (since there are fewer
rows to insert). However, the major benefit of storing
collections in separate nested tables is that you can create
indexes on the nested tables to satisfy queries for
collection items. Further, efficient piecewise updates of
the collection items can be performed without having to
overwrite the entire collection with a new collection.

Multiple levels of nesting are handled in Oracle XML DB
by either creating embedded object types or embedded
collection types. If the maxOccurs of a nested
complexType is 1, the corresponding object type is
embedded within the parent object type. If the maxOccurs
is greater than 1, a corresponding collection type is
created and embedded within the parent object type.
Further, these multiple levels of collections are stored in
multiple tables with foreign keys associating rows with
their parent row. Each nested table has an array_index
column to track the ordering of elements within the
specific collection.

One of the key advantages offered by Oracle’s storage
mechanism is the reduction is space usage when XML
documents are stored in the database. The main source of
space savings is the fact that tag names are not stored in
the instance document. The tags are part of the metadata —
as captured by the XML Schema and its mapping to the
column names. These tags are regenerated when the XML
document or fragment is subsequently retrieved.

4.3 DOM Fidelity

In general, any technique that involves shredding XML
documents to relational storage loses the fidelity of the
document in terms of one or more of the following
aspects:

1. whitespaces between elements and between
attributes
ordering of elements
comments within the XML document
processing instructions
namespaces declarations
element and attribute prefixes

SAINANE e N

In Oracle XML DB, Whitespace fidelity can be
maintained by storing an entire XML document in a
CLOB. Whitespace-fidelity is typically of less interest to
applications than fidelity to the XML Document Object
Model (DOM), the standard interface that allows

programs and scripts to dynamically access and update
the content, structure and style of documents [5]

XML DB supports fidelity of documents with respect to
their DOM (Document Object Model) i.e. an application
that uses the DOM API to traverse the XML document
will find that the input document is identical to the output
DOM. This corresponds to all the aspects listed above
except (1). To ensure DOM fidelity, XML DB adds a
system binary attribute, SYS XDBPD$, to each created
object type. This attribute is referred to as the positional
descriptor — which stores (in a binary encoded format) all
pieces of information that cannot be stored in any of the
other structured attributes. The encoded information
includes:

¢ Ordering of elements

e Comments

¢ Processing Instructions

* Namespace declarations

¢ Prefix information

¢ Mixed content — text nodes that are intermixed

with elements are stored in the system column.

4.4 ‘XDB’ Attributes

XML DB defines a set of attributes in the xdb namespace
http://xmlins.oracle.com/xdb. These attributes can be used
within a XML Schema document to influence various
aspects of XML storage and processing. For example, the
xdb:SQLName is used to specify the name of the attribute
in the corresponding object type. The table 4 lists the
XDB attributes and their functions.

Table 4 : XDB Attributes

maintainOrder Specifies if ordering of elements
within a collection is relevant —
this attribute determines whether a
varray type or nested table type is

created.

maintainDOM Specifies if the DOM fidelity in
terms of comments, PIs, etc is
relevant — this attribute determines

if the system PD column is created.

XDB Attribute
Name

Function

SQLName Specifies the name of attribute in
corresponding object type. If this
attribute is omitted, the name is

generated by mangling the XML

element or attribute name.

SQLType Specifies name of object type
created — applicable for
complexType declarations only. If
this attribute is omitted, the name
of the SQL object type is generated
from the name of the complexType

or complex element.

SQLCollType Specifies the name of the
collection type — applicable for
complexType declarations with

maxOccurs > 1

storeVarrayAsTable | Specifies whether the
corresponding varray is stored in-
lined in the row or as multiple

rows in a separate table.

4.5 Hybrid Storage Options

XML DB supports the complete spectrum of storage
mappings. At one end of the spectrum is “full shredding”
— as shown in the first example. Every attribute and
simple element value is stored in a separate column of
some table. All collections are stored in a separate table
from the parent table using a foreign key association. At
the other end of the spectrum, XML DB also supports
“packed storage” when the entire XML document is
stored in a single LOB.

A novel aspect of XML DB is that it also supports any
intermediate mapping (semi-structured) of the XML
Schema — by defining certain portions of the XML
document to be “shredded” while storing other fragments
in LOBs. This is referred to as the hybrid storage
mapping. The hybrid storage is accomplished by
specifying the XDB attribute SQLType within the
corresponding <complexType> declaration. In the
following example, the XML schema specifies that the
Addr fragment is stored as a CLOB while the other
elements and attributes are shredded.

<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
t ar get Nanespace="http://ww. or acl e. coni enp. xsd"
xm ns: enp="http://ww. oracl e. conf enp. xsd"
xm ns: xdb="http://xm ns. oracl e. conf xdb" >
<conpl exType nane="Enpl oyee" >
<sequence>
<el enent nane="Nane" type= string"/>
<el ement nanme="Age" type="deci mal"/>
<el ement nanme="Addr" xdb: SQLType="CLOB" >
<conpl exType >
<sequence>
<el enent nane="Street" type="string"/>
<el ement name="City" type="string"/>
</ sequence>
</ conpl exType>
</ el emrent >
</ sequence>
</ conpl exType>
</ schema>

The hybrid storage option is particularly useful when
certain parts of the XML document are seldom queried
and are mostly retrieved and stored in their entirety. By
storing these XML fragments as LOBs, the additional
overheads of decomposition and re-composition are
avoided.

4.6 Complex XML Schemas

This section discusses various interesting XML Schema
constructs and their corresponding structured mappings.

Cyclic Definitions:

A complexType can be defined directly or indirectly in
terms of itself. Similarly, the definition of an element can
contain a reference back to itself. Such cyclic definitions
are supported by XML DB by introducing a REF
(reference) attribute at the point of cycle completion. The
REF value(s) point at XML fragments which are stored in
the same or in different tables. Table 5 shows an example
of a cyclic definition and the corresponding SQL type.

Table 5 : Cyclic Definition

<xs:conpl exType name="Int| Address" >
<xs: conpl exCont ent >
<xs: extensi on base="Address">
<Xs: sequence>
<xs: el ement name="country"
type="xs:string"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>
</ xs: schema>

SQ Types

XML Schema

<xs: schema
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema" >
<xs: conpl exType name="SectionT">
<xs:sequence>
<xs: el ement nanme="title"
type="xs:string"/>
<xs: choi ce maxCccur s="unbounded" >
<xs: el erent name="body"
type="xs:string"/>
<xs: el enent nane="section"
type="SectionT"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>

type ADDR_T
(

street varchar2(4000),
city varchar2(4000)
)

type USADDR T
under ADDR T

(
zi p varchar 2(4000)
)i

type | NTLADDR_ T
under ADDR T

(
country varchar2(4000)
)

SQ Types

type SECTION.T
(

title varchar2(4000),

body VARRAY OF VARCHAR2(4000),
section VARRAY OF REF SECTION_T
)i

Table 6: ComplexType Derivations

XML Schema

<xs:schema
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena” >
<xs: conpl exType nanme="Address" >
<Xs:sequence>
<xs:el ement name="street"
type="xs:string"/>
<xs: el ement name="city" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: conpl exType nanme="USAddress" >
<xs: conpl exCont ent >
<xs:extension base="Address">
<Xs: sequence>
<xs: el enent nane="zip"
type="xs:string"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

ComplexType Derivations. Extension and Restriction

A complexType can be declared as a derivation of another
global complexType. The derived complexType is
mapped as a subtype of the object type corresponding to
the parent complexType. In case of derivation by
extension, the subtype has extra attributes corresponding
to the newly added elements and attributes in the derived
complexType. In case of derivation by restriction, the
subtype is empty and the restriction semantics are
enforced during schema validation. In Table 6, the types
USAddress and IntlAddress extend the base type Address.
The SQL type ADDR_T corresponding to Address is
extended by types USADDR_T and INTLADDR _T.

Wildcards:

An XML Schema could allow for arbitrary XML to
appear at certain portions of the XML documents. This is
achieved by the use of the <any> declaration. This is
mapped to a CLOB column that permits (in general) any
wellformed XML to be stored in that column. In addition,
the <any> declaration could specify namespace
constraints such as allowing only elements belonging to
namespaces other than the schema’s namespace (##other)
or unqualified elements (##local) or provide a list of
permitted namespace URLs. The namespace constraints
are enforced by Oracle prior to storing the entire fragment
within the CLOB column.

5. Queries

The XML data stored in a schema-based XMLType table
or column can be queried using XPath operators.
Specifically, the following operators are provided in
Oracle XML DB. The existsNode operator tests for the
presence of a node satisfying the given XPath. The
extract operator retrieves the document fragment
identified by the XPath. The extractValue operator returns
the raw value of the leaf node identified by the XPath.

One of the major benefits of structured storage in XML
DB is that queries involving XPath over XML data are
rewritten into SQL operators over the underlying
columns. This rewrite further enables B-Tree, bitmap and
other index access paths to be chosen by the query
optimizer. Thus XPath operators can be evaluated against
large collections of large XML documents without having
to ever construct documents (DOM) in memory. For
example, consider a query such as:

SELECT * FROM po_tab p
WHERE exi st sNode(val ue(p),
'/ Pur chaseOr der [Conpany=0Oracle]');

The above query is silently rewritten to the following:

SELECT * FROM po_tab p
WHERE p. conpany = 'Oracle';

In the above query, “company” is the column underlying
the Company simple element. Similarly, extract()
operators are also rewritten to directly retrieve data from
the underlying columns. In the example below, the select
list and the where clause expressions are rewritten into the
underlying columns.

Original Query
SELECT extract (val ue(p),
'/ PurchaseOrder/PONumi) FROM po_tab p
WHERE exi st sNode(val ue(p),
'/ Pur chaseOr der [Conpany=COracl e] ') ;

Rewritten Query
SELECT p. ponum FROM po_tab p
WHERE p. conpany = 'Oracle';

Further, if a B-Tree index is created on the “company”
column, the execution plan for the above query is as
follows:

Index Lookup -> Rowid Access

The table below lists the flavors of XPath expressions that
can be translated into equivalent underlying SQL queries.

Table 7 - XPath Rewrites

XPath Expression Description

Involves traversals
using child and
attribute axis.
Rewritten as traversals
over object type
attributes, where the
attributes are simple
scalar or object types.

Simple XPath expressions:

/ Pur chaseOr der/
@ur chaseDat e

/ Pur chaseOr der/
Conpany

Collection traversal expressions: | Involves traversal of
collection expressions

/ PurchaseOrder/Iten using child and

Part attribute axes.
Rewritten as joins with
the appropriate nested
tables.

Predicates: Predicates in the XPath

are rewritten into SQL

[Conpany="0COr acl e"] predicates.

List indexes are
rewritten to access the
n'th item in a
collection. An index on
the ARRAY INDEX
column (if present) is
used to quickly access
the appropriate item.

List indexes:

lineitenl1]

5.1 Functional Indexes

B-Tree indexes can be created on arbitrary expressions
including results of user defined functions. These are
referred to as functional indexes. The query optimizer
picks a functional index when the corresponding
expression is used as a query predicate. For example, a
user could choose to not shred an XML document. Instead
it could be stored as a CLOB (using the appropriate
schema annotations). Then, functional indexes can be
built on specific fragments of XML data to allow index
access paths for SQL queries. In the example below,
po_cl ob is a CLOB column (in a table called po_tab2)
storing purchase orders and a functional index is created
on the “Company” element value as follows:

CREATE | NDEX po_func_i dx
ON po_t ab2

(extract (po_cl ob,

/| Pur chaseOr der/ Conpany’)) ;

The functional index can be used to accelerate queries that
lookup purchase orders based on the “Company” value.

5.2 Text Indexes

XML DB provides a rich full-text search capability that is
also aware of XML sections, to help perform keyword
searches over XML stored in CLOBs. In the case where
keyword searches are needed over documents stored in
structured format, temporary CLOBs are generated at
index-creation time.

CREATE | NDEX po_ct x_i dx
ON po_t ab2(po_cl ob)
| NDEXTYPE | S ct xsys. cont ext;

The above Oracle Text index can be used to satisfy
queries that use the Contains() operator to perform
keyword based searches. The query below searches for all
documents that contain both the keywords Oracle and
XML.

SELECT * FROM po_t ab2
WHERE Cont ai ns(po_cl ob, ‘Oracle AND XM.");
The following query restricts the keyword search to a
specific section of the XML documents using the
INPATH query operator.

SELECT * FROM po_t ab2
WHERE Cont ai ns(po_cl ob,
‘Oracl e | NPATH / PurchaseOrder/Iteni);

6. Updates

The XML data stored in XMLType tables can be updated
by replacing the entire document with a new XML
document — or updating only certain portions of it. Oracle
XML DB provides an updat e XML operator to update
only portions of the document. This operator identifies the
target node using an XPath expression and specifies its
new value. For example, the statement below updates the
PONum value of a specific purchase order.

UPDATE po_tab p
SET val ue(p) =
updat exm (val ue(p),
" [PurchaseOrder/PONum text ()",
9999)
WHERE exi st sNode(val ue(p),
*/ Pur chaseOr der [Conpany=Oracl e]’);

The UPDATE statement is rewritten to directly update the
underlying column of the table.

UPDATE po_tab p
SET p. ponum = 9999
WHERE p. Conpany = ‘Oracl e’;

Rewriting the update statement enables significant
performance gains because of avoiding the need to
construct a DOM object in memory. Further, the predicate
used to identify the documents to be updated is also
rewritten and can use relational indexes as access paths.

A similar mechanism is used to optimize manipulation of
collection elements i.e. inserting or deleting elements
within a collection. This is achieved by defining new SQL
operators — addXM. to insert a XML fragment into the
collection identified by the given XPath and del et eXML
that deletes the specified node. These operators are
rewritten as appropriate SQL statements against the
underlying nested tables. For example, the statement
below appends a new | t emelement.

UPDATE po_tab p SET value(p) =
addXM. (val ue(p),
‘/ PurchaseOrder/ Lineltens’,
‘<ltemr
<Part>10i Doc Set</Part>
<Pri ce>3450</Pri ce>
</[ltenp)
VWHERE exi st sNode(val ue(p),
| Pur chaseOr der [Conpany=Cracl e] ') ;

The above statement is rewritten to directly insert a new
row into the i t em_t ab nested table.

7. XML Views

XML DB provides a mechanism to create XML views
over relational and object-relational data. Additionally, a
XML Schema can be attached to the view definition,
thereby creating a schema-based XMLType view. The
query comprising the view definition can either rely on
the default mapping of object-relational data to XML as
specified by the XML Schema — or use the standard
SQL/XML operators to create ad-hoc XML from
underlying data. The examples below show the two
mechanisms for constructing XML Views.

Example: XML View over object-relational data

The table po_obj _t ab is an object table of type

Pur chaseOr der _T. The view is created based on the
previously registered XML Schema “po.xsd”. Note that
the mapping from object-relational to XML is specified
within the XML Schema document. Hence, no further
information is required during the view creation.

CREATE VI EW po_vi ew of XM.TYPE

XMLSCHEMA “po. xsd” ELEMENT “PurchaseOrder”
AS

SELECT val ue(p) FROM po_obj _tab p;

Example: XML View over relational data using
SQL/XML operators

In this example, po_rel _tabanditems_rel tab
are relational tables for storing purchase orders. The
SQL/XML operator XMLEl enment creates an element
value in the output XML document. The XM_For est
operator creates a set of child element values. Finally,
XMLAgQ is an aggregate operator over the inner select
statement which returns a single (concatenated) value
corresponding to all the | t emvalues.

CREATE VI EW po_vi ew of XM.TYPE
XMLSCHEMA " po. xsd" ELEMENT "PurchaseOrder"
AS
SELECT
XM_E!l enment (" Pur chaseOr der ",
XML_For est (p. ponum " PONunt',
p. conpany " Conpany"),
(SELECT XM_AGH
XMLEl ement ("1 tent,
XM_Forest (i . part
"Part",
i.price,
"Price"))
FROM itens_rel tab i
VWHERE i.po_id = p.id))
FROM po_rel _tab p;

7.1 XML Views for Data Integration

XML Views are also useful in integrating data from
multiple, potentially disparate data sources including
other databases, etc. This is achieved by accessing the
external data using External Tables and/or Database Links
[9]. The XML view integrates all the data from multiple
databases, web sources and content servers into a single
XML model.

Example: XML View over external data sources
This example shows a XML View created over two
external tables accessed via database links dbl and db2.

CREATE VI EW cat al ogs of XM.TYPE
XMLSCHEMA "cat al og. xsd" ELEMENT " Cat al og"
AS

SELECT ...
FROM | i stings@lbl, inventory@b2
WHERE ..;

7.2 Queries over XML Views

XML Views can be queries using the same set of
operators as XMLType tables e.g. ext r act,

exi st sNode, etc. The user queries are rewritten to
operate directly over the underlying query expressions.
This enables further optimizations in terms of index

access methods, and avoids the need for costly in-memory
DOM operations.

SELECT extract (val ue(p),
'/ Pur chaseOr der / PONum)
FROM po_vi ew p
WHERE exi st sNode(val ue(p),
'/ Pur chaseOr der [Conpany=Oracl e] ') ;

8. Future Directions

As XML Query [7] becomes standard, we will support the
XML Query syntax over XML documents. Further, the
XML Query syntax will work against distributed
databases using standard connectivity mechanisms
provided by Oracle.

For highly variable or semi-structured (typically schema-
less) XML documents, different techniques are needed for
efficient storage and retrieval. We are developing new
storage and indexing mechanisms for such documents.

9. Conclusions

The SQL:1999 object-relational mechanisms provide an
attractive, standard way of absorbing the XML Schemas
in databases. We have used such mechanisms to absorb
the XML Schema data model into the Oracle server,
ensuring fidelity to the XML DOM, and providing new
standard access methods for navigating and querying
XML. This merging of the XML and SQL models creates
an attractive ‘duality’ whereby applications can perform
SQL operations on XML data, and XML operations on
SQL data.

10. Acknowledgements

Over the years a number of individuals have made key
contributions to the gradual development of the
capabilities described in this paper. Vishu Krishnamurthy,
Susan Kotsovolos, Muralidhar Krishnaprasad, Anand
Manikutty and other members of their teams have
developed the SQL object-relational functionality. Eric
Sedlar, Nipun Agarwal and Mark Drake have helped build
capabilities related to XML stored as content. Paul Dixon,
Chung-Ho-Chen and their teams have developed full-text
query support over XML.

11. References

[1] The W3C XML Schema Standard (Schema
Working Group), see http://www.w3.org/XML/Schema.

[2] Oracle XML DB Developer’s Guide, Oracle 9iR2.
See http://otn.oracle.com/tech/xml/xmldb/

[3]The ANSI-ISO SQL:1999 Standard see,
http://www.ncb.ernet.in/education/modules/dbms/sq199in
dex.html.

[4] Vishu Krishnamurthy, Sandeepan Banerjee, Anil
Nori: Bringing Object-Relational ~ Technology to
Mainstream. SIGMOD Conference 1999 : 513-514

[5]The W3C XML DOM Standard (DOM Working
Group), see http://www.w3.org/DOM/

[6]The International Committee for Information
Technology Standards H2.3 Task Group see,
http://www.sqlx.org/.

[7TThe W3C XML Query Group see,
http://www.w3.org/XML/Query.

[8] Sandeepan Banerjee, Vishu Krishnamurthy,
Muralidhar Krishnaprasad, Ravi Murthy : Oracle8i - The
XML Enabled Data Management System, ICDE 2000.

[9] Oracle 9i Heterogeneous Connectivity
Administrator’s Guide.

