

re
l
se

d
Oracle8i - The XML Enabled Data
Management System

Sandeepan Banerjee
Vishu Krishnamurthy

Muralidhar Krishnaprasad
Ravi Murthy

(sabanerj, vkrishna, mkrishna,
rmurthy@us.oracle.com)

Abstract

XML is here as the internet standard for informa-
tion exchange among e-businesses and applica-
tions. With its dramatic adoption and its ability to
model structured, unstructured and semi-structured
data, XML has the potential of becoming the data
model for internet data. In the recent years, Oracle
has evolved its DBMS to support complex, struc-
tured, and un-structured data. Oracle has now
extended that technology to enable the storage and
querying of XML data by evolving its DBMS to an
XML enabled DBMS - Oracle8i.

In this paper, we will present Oracle’s XML-
enabling database technology. In particular, we will
discuss how XML data can be stored, managed, and
queried in the Oracle8i database.

1.0 Introduction

XML is becoming the internet standard for infor-
mation exchange. Businesses need to be able to
communicate among other businesses and work-
flow components using XML. However, a large
part of the business data sits in rows and columns of
relational and object-relational tables, and will con-
tinue to be so since the database provides excellent
queriability, scalability and availability. It is imper-
ative, therefore, to be able to convert this data to
and from XML in the simplest way possible. We
expect that for the next several years, XML will be
predominantly used as a standard of information
exchange. Consequently, a large amount of XML
will be converted to and from object-relational and
pure relational database structures.

There is, however, a different scenario in the case of
messaging subsystems and document management
subsystems. The XML data corresponding to these
subsystems tend to be unstructured or semi-struc-
tured.

In this paper we will discuss, how using the
Oracle8i server along with some simple utilities, we
can achieve both the goals of storing and retrieving
structured and unstructured XML documents in a
simple, scalable and efficient manner.

The rest of the paper is structured as follows. We
will first discuss the infrastructure support in
Oracle8i namely the Object-relational technology,
extensibility framework and the Java support. Then
we will discuss the various options available for
mapping XML to database structures. We will then
consider how to store structured and unstructured
XML documents and query over them. Finally we
will discuss the forthcoming standard for express-
ing XML schemas and its relevance to the map-
pings discussed above.

2.0 Oracle8i’s Infrastructure support
for XML

We will discuss the various infrastructure compo-
nents available in Oracle8i that can be leveraged to
support XML [Oracle8i].

2.1 Object-Relational infrastructure

With the popular Oracle8 and Oracle8i releases of
its server, Oracle has evolved its flagship database
to an object-relational engine closely following the
evolution of the SQL99 standard. Object-relational
technology enables you to encapsulate data and its
associated behavior into a single unit. Oracle’s
object-relational engine allows you to define such
object types, collections of types as well as refer-
ences to object types.

For instance, consider the case of a Purchase Order.
A purchase order includes details about the pur-
chase, the customer, and a list of line items that a
shipped with the order. If normalized into relationa
tables, there will be two tables, one for the purcha
order, one for all the line items and the customer
information and address will be broken into multi-
ple columns (such as street, city, zip etc.). Using
user-defined type mechanism, this can be modele
as a purchase order object containing a shipping
address, customer object and a list of line items.
The type definitions are given below:-

CREATE TYPE addressType AS OBJECT
(
 street varchar2(100),
 city varchar2(40),
 state varchar2(2),
Oracle8i - The XML Enabled Data Management System December 30, 1999 1

in

 -
-

es

e
e-

-
te

d

-

s
s

t

,

r-
ys-

vel
 zip varchar2(20)
);

CREATE TYPE customerType AS OBJECT
(
 custNo number,
 custName varchar2(30),
 custAddr addressType,
);

CREATE TYPE lineItemType AS OBJECT
(
 lineItemNo number,
 lineItemName varchar2(30),
 lineItemPrice number,
 lineItemQuan number
);

CREATE TYPE lineItemList
 AS TABLE OF LineItemType;

CREATE TYPE PurchaseOrderType AS OBJECT
(
 purchaseNo number,
 purchaseDate date,
 customer customerType,
 lineItemList lineItemListType
);

We can now create a table definition that holds
instances of the purchase order type.

CREATE TABLE purchaseOrderTab
 AS TABLE OF purchaseOrderType
 NESTED TABLE lineItemList
 STORE AS lineItemListNestedTab;

We can store instances of purchase order in this
table,

INSERT INTO purchaseOrderTab VALUES(
 purchaseOrderType(‘1001’,SYSDATE,
 customerType(100,’Hose’,
 addressType(‘200 Redwood Shrs’,’Redwood
 City’,‘CA’,’94065’),
 lineItemListType(
 lineItemType(901,’Chair’,234.55,10),
 lineItemType(991,’Desk’,3456.63, 20)
)
);

We can execute queries on these using the SQL
extensions for object-relational access.

SELECT VALUE(p) FROM purchaseOrderTab;
 -- gets the purchase order object

SELECT e.customer.custAddr
FROM purchaseOrderTab e;
 -- get the customer addresses

The object-relational infrastructure provides the
support for storing structured object instances in the
database. XML, inherently being a structured data

format, can be easily mapped to object-relational
instances. This mapping will be discussed further
later sections.

2.2 Extensibility Architecture

Normally, the database provides a set of services
for example, a basic storage service, a query pro
cessing service, services for indexing, query opti-
mization and so on. Applications use these servic
to avail themselves of database functionality.

In Oracle8i, these services are made extensible so
that data cartridges can provide their own imple-
mentations. When some aspect of a native servic
provided by the database is not adequate for a sp
cific domain, a developer may provide a domain-
specific implementation. For example, if you build
a Spatial data cartridge for Geographical Informa
tion Systems, you may need the capability to crea
spatial indexes. To do this, you would implement
routines that create a spatial index, insert an entry
into the index, update the index, delete from it, an
so on. The server would then automatically invoke
your implementation every time indexing function
ality was needed for spatial data. In effect, you
would have extended the Indexing Service of the
server to handle spatial data.

An example use of the extensibility infrastructure i
interMedia text searching. The text kept in LOBs i
indexed using the extensibility indexing interface.
interMedia text provides operators such as CON-
TAINS which you can use to search within the tex
for substring matches.

The extensibility framework provides the infra-
structure for specialized XML cartridges to be built
where the indexing and optimization of access to
XML is accomplished by the cartridge.

2.3 Java support

Oracle8i provides native support for Java in the
DBMS, by providing a native Java VM that is
closely integrated with the database for high perfo
mance and scalability. In addition, the database s
tem natively supports JDBC, SQLJ, an ORB and
the EJB framework. In addition, Oracle8i also
comes with a HTTP listener, which means that it
can act as a web server as well.

The object-relational framework provides a more
natural way to maintain a consistent structure
between a set of Java classes at the application le
Oracle8i - The XML Enabled Data Management System December 30, 1999 2

e
-

and the data model at the data storage level. In
Oracle8i, the object-relational facilities have been
tightly integrated with the Java environment in the
following ways:

1. Server object-relational schema can be mapped
to java classes. The JPublisher utility can gener-
ate this mapping automatically.

2. Java is one of the language choices for imple-
menting object type methods and data car-
tridges.

3. Objects can be manipulated (stored and
retrieved) using JDBC or SQLJ.

Support for Java within the database is vital, since a
lot of the XML infrastructure, such as parsers etc.
are available in Java and can be readily used inside
the server. Also, the components for XML built in
Java can be run inside the server or outside in the
application tier.

3.0 XML in the database

There are several different aspects to using XML in
the database. The most common case is to use XML
as a interchange format where the existing business
data is wrapped into XML structures. In this case
the XML format is used only for the interchange
process itself and is transient. The other scenario is
to store and query XML documents in the database.
Oracle8i supports both of these models.

3.1 Generation of XML

XML can be generated from object-relational tables
and views. The benefits of using object-relational
tables and views as opposed to pure relational struc-
tures are discussed below. Oracle has released a free
utility available at the Oracle Technology Network
[XMLSQL]. This utility converts the result of a
SQL query into XML by mapping the query alias or
column names into the element tag names and pre-
serving the nesting of object types. The result repre-
sentation can be in text or a DOM (Document
Object Model) tree, the generation of the latter
avoids the overhead of parsing the text to directly
realize the DOM tree.

There is a clean relationship between structured
XML instances and object-relational types. Col-
umns map to top level elements. Scalar values map
to a elements with text only content. Object types
are mapped to elements with its attributes appearing
as sub-elements. Collections map to lists of ele-

ments. Further, we can also map object references
and referential constraints to IDREFs in the XML
document.

For instance, the following Java code generates an
XML instance corresponding to a SQL query.

 public void testXML()
 {
 DriverManager.registerDriver(
 new oracle.jdbc.driver.OracleDriver());

 //initialize a JDBC connection
 Connection conn =
 DriverManager.getConnection(
 "jdbc:oracle:oci8:scott/tiger@");

 //initialize the OracleXMLQuery;
 OracleXMLQuery qry =
 new OracleXMLQuery(conn,
 ”select * from purchaseOrderTab”);

 // set the document name
 qry.setRowsetTag(“PurchaseOrderList”);

 // set the row element name
 qry.setRowTag(“PurchaseOrder”);

 // get the XML result
 String xmlString = qry.getXMLString();

 // print result
 System.out.println(“ OUPUT IS:\n"+xmlString);
}

The query selects all the top level elements from th
purchase order table and we use the generic map
ping to get the following XML document:-

<?xml version=’1.0’?>
<PurchaseOrderList>
 <PurchaseOrder num=”1”>
 <purchaseNo>1001</purchaseNo>
 <purchaseDate>10-Jan-1999 20:33:23.3
 </purchaseDate>
 <customer>
 <custNo>100</custNo>
 <custName>Hose</custName>
 <custAddr>
 <street>200 Redwood Shrs</street>
 <city>Redwood City</city>
 <state>CA</state>
 <zip>94065</zip>
 </custAddr>
 </customer>
 <lineItemList>
 <lineItem>
 <lineItemNo>901</lineItemNo>
 <lineItemName>Chair</lineItemName>
 <lineItemPrice>234.55</lineItemPrice>
 <lineItemQuan>10</lineItemQuan>
 </lineItem>
 <lineItem>
 <lineItemNo>991</lineItemNo>
Oracle8i - The XML Enabled Data Management System December 30, 1999 3

ed

e

o

a-

g

g

s

.

-

;

n
e

his

l

l in
 <lineItemName>Desk</lineItemName>
 <lineItemPrice>3456.63</lineItemPrice>
 <lineItemQuan>20</lineItemQuan>
 </lineItem>
 </lineItemList>
 </PurchaseOrder>
 <PurchaseOrder>
 <!-- more purchase orders. -->
 </PurchaseOrder>
</PurchaseOrderList>

The XML document created is an exact structural
replica of the object type. Using object views, you
can create such object-relational mappings from
existing relational tables.

3.2 XML Storage options

 There are several storage options available for stor-
ing XML data.

LOB storage:

CLOB storage: Oracle8i provides for the storage of
unstructured data as ‘large objects’ or LOBs.
Unstructured XML documents can be stored in
Character LOBs (CLOBs).

BFILE storage: Although more useful for multi-
media data, BFILEs which are external file refer-
ences can also be used. In this case the XML is
stored and managed outside the RDBMS, but how-
ever, can be used in queries on the server. The meta-
data for the document may be stored in object-
relational tables in the server for fast indexing and
access.

Oracle8i allows the creation of interMedia text
indexes on these LOB columns, in addition to
URLs that point to external documents. This text
cartridge leverages the extensibility mechanism and
provides full text indexing of these documents.
Oracle8i has extended this mechanism to work on
XML data as well. The text cartridge can recognize
XML tags, and section and sub-section text search-
ing have been extended to support searching within
an XML element content. The result is that queries
can be posed on unstructured data and restricted
to certain sections or elements within a
document.

Object-Relational storage:

A natural way to store XML is as object-relational
instances. The object-relational type system can
fully capture and express the nesting and list

semantics of XML. Complex XML documents can
be stored as object-relational instances and index
efficiently. With the extensibility infrastructure,
new types of indices, such as path indices may b
created for faster searching through XML docu-
ments.

3.3 Storage of structured XML documents

XML data coming into the database may be of tw
forms. The data may be in the form of structured
documents, where the structure is known a priori
and is the same for all instances. In this case, the
document can be stored in relational or object-rel
tional structures. In this case as well, the object-
relational type system can provide a direct mappin
to the XML document. This mapping is relatively
straight forward and the Oracle XMLSQL utility
offers an insert mechanism that can map an XML
document directly into a given table or view.

The mapping is done by matching the element ta
names with the column names in the table. Ele-
ments with text only content map to scalar column
and elements containing sub-elements map to
object types. Lists of elements map to collections

The example XML document given earlier can be
inserted into the database using the XMLSQL util
ity as follows:-

String xmlDoc = " …the actual xml document… ";
Connection conn =
 DriverManager.getConnection(…);
OracleXMLSave sav = new
 OracleXMLSave(conn,"purchaseOrderTab")
sav.insertXML(xmlDoc);

The advantage of storing an XML document as a
object-relational instance is that the structure of th
document is preserved in the database as well. T
allows the XML document to be viewed and tra-
versed in SQL in a way similar to a XPath traversa
on the document.

For instance a XPath traversal such as,

 //purchase_order[pono=101]/shipaddr/street

can be easily represented as an attribute traversa
SQL -

SELECT po.shipaddr.street
FROM purchase_order_tab po
WHERE po.pono = 100;
Oracle8i - The XML Enabled Data Management System December 30, 1999 4

xt
d

a-
ts

e
-

a

t

 of

-

n

oc-

-

h

,

e
e
s.
Mapping to Object-Relational storage enables
existing database applications to work against XML
data. Further, the rich functionality provided by
Oracle8i on Object-Relational columns such as
indexing, partitioning, parallel query, etc. can be
leveraged.

However, using such a mapping the original docu-
ment is not exactly reproducible - for instance,
comments are lost. But this can be avoided by stor-
ing a copy of the original document in a CLOB
(discussed below) and using the object-relational
mapped data for query efficiency purposes. Another
potential problem could arise due to the ordering
amongst the elements. In order to preserve the ele-
ment ordering, we can have a special column in the
underlying table and order the results using that col-
umn.

3.4 Storage of unstructured XML
documents

If the incoming XML documents do not conform to
one particular structure, then it might be better to
store such documents in CLOBs. For instance, in an
XML messaging environment, each XML message
in a queue might be of a different structure.

Oracle8i provides interMedia Text cartridge for
indexing CLOB columns. This cartridge uses the
extensibility mechanism to implement operators
such as CONTAINS to search the text data. This
has been extended to support searching of XML
documents, including section and subsection
searches.

SELECT *
FROM purchaseXMLTab
WHERE
 CONTAINS(po_xml,”street WITHIN addr”) >= 1;

A CLOB storage is ideal if the structure of the
XML document is unknown, arbitrary or dynamic.
However, much of the SQL functionality available
on object-relational columns cannot be exploited.
Also, concurrency of certain operations such as
updates may be reduced. However, the exact copy
of the document is retained.

3.5 Hybrid approach

In the previous section we discussed how structured
XML documents can be mapped to object-rela-
tional instances and unstructured XML documents
to LOBs. However, in many of the cases, the user
would like to have a better control of the granularity

of the mapping. For instance, when mapping a te
document, such as a book, in XML, the user woul
not want every single element to be exploded and
stored as object-relational. Storing the font inform
tion and paragraph information for such documen
in an object-relational format, does not serve any
useful purpose with respect to querying. Storing th
whole text document in a CLOB reduces the effec
tive SQL queriability on the entire document.

The alternative is to have user-defined granularity
for such storage. In the book example, the user
would like to query on top-level elements such as
chapter, section, title etc. and the contents within
section can be stored in a CLOB.

The user can specify the granularity of mapping a
table definition time. The server will automatically
construct the XML from the various sources and
decompose queries appropriately. The advantage
this approach is that it gives the flexibility of stor-
ing useful and queryable information in object-rela
tional format while not decomposing the entire
document. It also saves time in reconstructing the
document, since the entire document is not broke
down. It also enables text searching on part of the
document which are stored in LOBs.

3.6 XML Querying and SQL
Interoperability

XPath has been devised as a standard for XML d
ument navigation in XSLT scripts and XPointers.
This can be extended for navigation in XML docu
ments stored in the database system. Thus if the
user has stored purchase_order as an XML docu-
ment, to retrieve the first line item numbers of a
particular document, you can execute a query suc
as,

SELECT extractNode(e.po_xml_column,
 ‘//line_item_list[1]/itemno’)
FROM purchase_order_tab e
WHERE e.pono = 100;

This example shows how SQL and XML querying
can coexist - XPath behaves as a sublanguage
within a SQL operator. We propose two operators
extractNode and existsNode. extractNode() operator
extracts the given nodes from the XML document
and returns an XML fragment. existsNode() on th
other hand returns a boolean value indicating if th
Xpath traversal on the document yielded any node
The boolean operator is useful in predicates. For
example, the following query lists all documents
which contain a line item with itemno = 100.
Oracle8i - The XML Enabled Data Management System December 30, 1999 5

le

te

-

u-

t

-

g
e

r-
SELECT e.po_xml_column
FROM purchase_order_tab e
WHERE
 existsNode(e.po_xml_column,
 ‘//line_item_list[itemno=”100”]/’) != 0;

3.7 XML Transformations

The XML that is generated from the database will
be in a canonical format that maps columns to ele-
ments and object types to nested elements. How-
ever, applications might require different
representations of the XML document in different
circumstances.

3.7.1 Transformation of query results:

This involves querying on the original document
and transforming the result into a form required by
the end-user or application. For instance, if an
application is talking to a cellular phone using
WML, it might need to transform the XML gener-
ated into WML or other similar standard suitable
for communicating with the cellular phone.

This can be accomplished by applying XSL-T
transformations on the result XML document. The
XSL-T transformations can be pushed into the gen-
eration phase itself as an optimization. A scalable,
high performant XSL-T transformation engine

within the database server would be able to hand
large amounts of data.

3.7.2 Indexing and Querying on
transformations:

There are cases when we need to be able to crea
indexes and query on transformed views of an XML
document. For example, in a XML messaging sce
nario, there might be purchase order messages in
different formats. The user, however, would like to
query them in a canonical fashion, so that a partic
lar query can work across all the purchase order
messages. In this case, the query is posed agains
the transformed view of the documents.

 The user can register standard XSL-T transforma
tion scripts for transforming XML documents to the
canonical format, with the database. When indexin
or querying, the database can automatically creat
the transformed virtual documents and satisfy the
query or build the index.

3.8 Indexing approaches

The naive implementation for the extractNode()
and existsNode() operators is to parse the XML
document and perform the path traversal and
extract the fragment. But this would not be a perfo

Chapter
 title

Table_of_
Contents

<?xml version=’1.0’ ?>
<BOOK>
 <TITLE>Oracle PL/SQL</TITLE>
 <AUTHOR>Steve Feuerstein</AUTHOR>
 <TABLE_OF_CONTENTS>
 <CHAPTER>
 <CHAPTER_NUM>1</CHAPTER_NUM>
 <TITLE>Introduction</TITLE>
 <SECTIONS>
 ...
 <SECTIONS>
 </CHAPTER>
 ...
 </TABLE_OF_CONTENTS>
 <DETAILS>
 <CHAPTER no=”1”>
 <SECTION no=”1” name=”What is PL/SQL?”>
 PL/SQL is a programming language
 that Oracle supports.
 </SECTION>

 </CHAPTER>
 ...
 </DETAILS>
</BOOK>

OBJECT-RELATIONAL STORAGE

TITLE
AUTHOR

Chapter

Details

PL/SQL is a prog
amming language.

LOB storage

FIGURE 1. Hybrid method of storage of XML documents
Oracle8i - The XML Enabled Data Management System December 30, 1999 6

ta-

-

s

ed

>
>

mant and scalable solution. The second approach
would be to utilize the inverted text index which
interMedia text creates when it parses a document.
This can give the offset into the document where
the element occurs. But this would not work for
object-relational data. A third but different
approach would be to index the XPath path expres-
sions themselves.

A lot of pioneering work has been done in this
respect in the research community, especially in
Lore [Lore]. Lore creates a data guide for all semi-
structured documents stored in the database, which
is an index of all possible path traversals through all
the documents. We can follow a similar approach
and index on all possible XPath path expressions on
the XML document, using the extensibility mecha-
nism. This, however, does pose some challenges in
generating the optimal execution plans - such as
bottom up vs. top down evaluations.

4.0 XML schemas and mapping of
documents

W3C has chartered a Schema working group to pro-
vide a new, XML based notation for structural
schema and datatypes as an evolution of the current
Document Type Definition (DTD) based mecha-
nism. XML Schemas can be used for constraining
document structure (elements, attributes,
namespaces)[XML-Schema1] as well as content
(datatypes, entities, notations)[XMLSchema2]; the
datatypes themselves can either be primitive (such
as bytes, dates, integers, sequences, intervals) or be
user-defined (including ones that are derived from
existing datatypes and which may constrain certain
properties -- range, precision, length, mask -- of the
basetype.) Application-specific constraints and
descriptions are allowed. XML Schema provides
inheritance for element, attribute, and datatype defi-
nitions. Mechanisms are provided for URI refer-
ences to facilitate a standard, unambiguous
semantic understanding of constructs. The schema
language provides for embedded documentation or
comments.

For example, you can define a simple data type as:

<datatype name=”positiveInteger”
 basetype=”integer”/>
 <minExclusive> 0 </minExclusive>
</datatype>

Though an exhaustive discussion of XML Schema
is beyond the scope of this paper, it is clear even

from the simple example above that it provides a
number of important new constructs over DTDs --
such as a basetype, and a ‘minimum value’ con-
straint. When dynamic data is generated from a
database, it is typically expressed in terms of a da
base type system. In case of Oracle, this is the
object-relational type system described above,
which provides for much richness in data types --
such as NULL-ness, variable precision (e.g. NUM
BER(7,2)), check constraints, user-defined types,
inheritance, references between types, collection
of types and so on. XML Schema can capture a
wide spectrum of schema constraints that go
towards better matching generated documents to
the underlying type-system of the data.

Consider the simple Purchase Order type express
in XML Schema:

<type name="Address" >
 <element name="street" type="string" />
 <element name="city" type="string" />
 <element name="state" type="string" />
 <element name="zip" type="string" />
</type>

<type name=”Customer”>
 <element name=”custNo”
 type=”positiveInteger”/>
 <element name=”custName” type=”string” />
 <element name=”custAddr” type=”Address” />
</type>

<type name=”Items”>
 <element name=”lineItem” minOccurs=”0”
 maxOccurs=”*”>
 <type>
 <element name=”lineItemNo”
 type=”positiveInteger” />
 <element name=”lineItemName”
 type=”string” />
 <element name=”lineItemPrice”
 type=”number” />
 <element name=”LineItemQuan”>
 <datatype basetype=”integer”>
 <minExclusive>0</minExclusive>
 </datatype>
 </element>
 </type>
 </element>
</type>

<type name="PurchaseOrderType">
 <element name="purchaseNo"
 type="positiveInteger" />
 <element name="purchaseDate" type="date" /
 <element name="customer” type=”Customer” /
 <element name="lineItemList" type="Items" />
</type>
Oracle8i - The XML Enabled Data Management System December 30, 1999 7

These XML Schemas have been deliberately con-
structed to match closely the Object-Relational pur-
chase order example described in Section 2.1
above. The point is to underscore the closeness of
match between the proposed constructs of XML
Schema with SQL:1999-based type systems. Given
such a close match, it is relatively easy for us to
map an XML Schema to a database Object-Rela-
tional schema, and map documents that are schema-
valid according to the above schema to row objects
in the database schema. In fact, the greater expres-
siveness of XML Schema over DTDs greatly facili-
tates the mapping.

The applicability of the rich schema constraints
provided by XML Schema is not limited to data-
driven applications. There are more and more docu-
ment-driven applications that exhibit dynamic
behavior. A simple example might be a memo,
which is routed differently based on markup tags. A
more sophisticated example is a technical service
manual for an intercontinental aircraft. Based on
complex constraints provided by XML Schema,
one can ensure that the author of such a manual
always enters a valid part-number, and one might
even ensure that part-number validity depends on
dynamic considerations such as inventory levels,
fluctuating demand and supply metrics, or changing
regulatory mandates.

5.0 Summary

XML is emerging as the standard for data inter-
change on the web. Oracle8i is XML-enabled to
handle the current needs of the market. Oracle8i is
capable of storing structured XML data as object-
relational data, and unstructured XML document as
interMedia Text data. Correspondingly, Oracle8i
also provides the ability to automatically extract
object-relational data as XML. In Oracle8i, effi-
cient querying of XML data is facilitated using
standard SQL. Oracle8i also provides the ability to
access XML documents using the DOM (Document
Object Model) API.

Oracle8i will continue to evolve to meet the needs
of the web. Oracle8i’s highly scalable, robust, data-
base platform will be evolved to become a leading
XML server providing efficient and seamless XML
support using standard APIs, languages and proto-
cols.

6.0 References
1. [Oracle8i] Oracle8i documentation set, http://

www.oracle.com

2. [XMLSQL] Oracle XMLSQL utility, http://tech-
net.oracle.com/tech/xml/oracle_xsu/

3. [XSL-T] XSL transformations, W3C Recommenda-
tion, 1999, http://www.w3.org/TR/xslt

4. [XPath] XML Path language, W3C Recommendation,
1999, http://www.w3c.org/TR/xpath

5. [XML] Extensible Markup Language, W3C Recom-
mendation, 1998, http://www.w3c.org/TR/1998/REC-
xml-19980210

6. [XML-Schema1] XML Schema Part 1 - Structures,
W3C Working Draft, 1999, http://www.w3.org/TR/
xmlschema-1/

7. [XML-Schema2] XML Schema Part 2 - Datatypes
W3C Working Draft, 1999, http://www.w3.org/TR/
xmlschema-2/

8. [Lore]. Query Optimization for XML, J. McHugh and
J. Widom, Proceedings of the Twenty-Fifth Interna-
tional Conference on Very Large Data Bases, Edin-
burgh, Scotland, September 1999.
Oracle8i - The XML Enabled Data Management System December 30, 1999 8

	1.0 Introduction
	2.0 Oracle8i’s Infrastructure support for XML
	2.1 Object-Relational infrastructure
	2.2 Extensibility Architecture
	2.3 Java support

	3.0 XML in the database
	3.1 Generation of XML
	3.2 XML Storage options
	3.3 Storage of structured XML documents
	3.4 Storage of unstructured XML documents
	3.5 Hybrid approach
	3.6 XML Querying and SQL Interoperability
	3.7 XML Transformations
	3.7.1 Transformation of query results:
	3.7.2 Indexing and Querying on transformations:

	3.8 Indexing approaches

	4.0 XML schemas and mapping of documents
	5.0 Summary
	6.0 References

