Campus Talk: Targeting Ads

Sandeepan Banerjee, Google
AdWords

- Multiple ads on keywords, down right-hand-side
- Charges based on position
- Online sales
Definitions Soup

- **Page inventory** available page slots for ads
- **Keywords** terms entered in a search, bought by adv.
- **Impression** showing ad to a user
- **Creative** – the text/image/video that is shown
- **CPM** Cost Per Mille (1,000 impressions)
- **CPC** Cost Per Click
- **CTR** Click Through Rate (= Clicks/Impressions)
Creating an AdWords Ad

![AdWords Interface](image)

Ad Group: Ad Group #1 5204121

Paused

View History: this ad group

Ad Group Approval Bin: Primary | Secondary | All

Feb 14, 2003 to Jan 20, 2006

Add keywords: Quick add | Keyword tool

Edit Keywords | **Search this list**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Status</th>
<th>Current Bid</th>
<th>Clicks</th>
<th>Impr</th>
<th>CTR</th>
<th>Avg CPC</th>
<th>Cost</th>
<th>Avg Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Enabled</td>
<td>Default $1.00</td>
<td>456</td>
<td>22,864</td>
<td>1.99%</td>
<td>$0.46</td>
<td>$209.47</td>
<td>3.0</td>
</tr>
<tr>
<td>seattle apartment</td>
<td>Active</td>
<td>$1.00</td>
<td>125</td>
<td>5,634</td>
<td>2.21%</td>
<td>$0.30</td>
<td>$37.26</td>
<td>1.1</td>
</tr>
<tr>
<td>seattle condo</td>
<td>Active</td>
<td>$1.00</td>
<td>143</td>
<td>2,906</td>
<td>4.92%</td>
<td>$0.43</td>
<td>$61.89</td>
<td>1.2</td>
</tr>
<tr>
<td>seattle condominium</td>
<td>Active</td>
<td>$1.00</td>
<td>50</td>
<td>1,296</td>
<td>3.85%</td>
<td>$0.33</td>
<td>$16.54</td>
<td>1.3</td>
</tr>
<tr>
<td>seattle fremont apartment</td>
<td>Active</td>
<td>$1.00</td>
<td>2</td>
<td>79</td>
<td>2.53%</td>
<td>$0.06</td>
<td>$0.12</td>
<td>1.1</td>
</tr>
<tr>
<td>seattle fremont real estate</td>
<td>Active</td>
<td>$1.00</td>
<td>2</td>
<td>47</td>
<td>4.25%</td>
<td>$0.28</td>
<td>$0.57</td>
<td>1.2</td>
</tr>
<tr>
<td>seattle fremont condo</td>
<td>Active</td>
<td>$1.00</td>
<td>2</td>
<td>24</td>
<td>8.33%</td>
<td>$0.09</td>
<td>$0.17</td>
<td>1.1</td>
</tr>
<tr>
<td>seattle luxury apartment</td>
<td>Active</td>
<td>$1.00</td>
<td>1</td>
<td>22</td>
<td>4.54%</td>
<td>$0.54</td>
<td>$0.54</td>
<td>1.9</td>
</tr>
<tr>
<td>seattle fremont house</td>
<td>Active</td>
<td>$1.00</td>
<td>4</td>
<td>19</td>
<td>21.05%</td>
<td>$0.55</td>
<td>$2.19</td>
<td>1.5</td>
</tr>
<tr>
<td>seattle luxury condo</td>
<td>Active</td>
<td>$1.00</td>
<td>1</td>
<td>7</td>
<td>14.28%</td>
<td>$0.18</td>
<td>$0.18</td>
<td>2.0</td>
</tr>
<tr>
<td>seattle luxury condominium</td>
<td>Active</td>
<td>$1.00</td>
<td>2</td>
<td>3</td>
<td>15.24%</td>
<td>$0.33</td>
<td>$0.66</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Specialized Search

- Given a query, find the best ads from over 100,000 advertisers

- How do you model utility to users?
 - Want high-quality, targeted ads, that generate revenue
 - Balance importance of high click-through-rate (CTR) with advertiser’s willingness to pay

- Auction theory helps!
Keyword: skydive

Skydive with Us
Only one accident last year.
Have fun and play the odds!
www.skydivewithus.com

Need Skydiving Insurance?
We’ve got your back.
Even if you lose, you win!
www.skydiveinsurance.com

CPC=$0.40, CTR=2%
Effective CPM = $0.40*20=$8

CPC=$0.20, CTR=5%
Effective CPM = $0.20*50=$10
$0.40 and $0.20 are “bids” per click reflecting the maximum CPC the advertiser is willing to pay.

Insurance company could have bid $0.16001 CPC had eCPM = $0.16001*50 = $8.005 and still gotten ranked #1.

So… we act as if they did: they pay only $0.16/click, not $0.20.
Let Advertisers Bid True Value

- The system acts in their best interest
- No need to increase their bid when someone else gets ranked ahead of them
- When there’s no competition, you pay the minimum
- The minimum based on quality of the ad, based on a user-driven assessment
Auction Basics

- English – “going going gone!”
- Dutch – price dropped until someone bites
- 1st price sealed – winner pays their bid

“Winners curse” • “Bid Shading”

→ Complicates selecting a bid
Vickrey Auction

- 2nd price sealed – pay 2nd highest bid
- All 4 auctions have the same expected revenue for seller
- Vickrey has simplest bidding strategy: Just bid your true value (no bid shading, no winner’s curse)
- Won Nobel Prize in Economics (1996)
Engineering challenge: Predicting CTR

● Dizzying set of factors could affect clickthrough
 ○ Country, time of day, targeted text vs query, …

● How does one automatically figure out which factor is more relevant?
 ○ How to update model quickly in face of change
 ○ How do you estimate CTR for not-yet-shown ads?
The 10 billion-dollar JavaScript snippet…

```html
<script type="text/javascript"><!--
google_ad_width = 728; google_ad_height = 90;
google_ad_format = "728x90_as"; google_ad_type = "text_image";
//--></script>
<script type="text/javascript"
src="http://pagead2.googlesyndication.com/pagead/show_ads.js">
</script>
```
The Power of Data applied to Contextual Targeting

- Conventional wisdom:
 - Given an order of magnitude increase in computational power…
 - … you can solve previously impractical problems

- Unconventional wisdom
 - Given an order of magnitude increase in data…
 - … you can solve previously unsolvable problems!

- Consider how to determine similarity between text:
 - How similar is “Kofi Annan” to “UN Secretary-General”?
Traditional Information Retrieval Similarity

- Traditionally: Similarity is function of term frequency
 within a document and across all documents

- $TF(w) = \text{frequency of term } w \text{ in a document/query}$
 - Intuition: a word appearing more frequently in a text is more likely to be related to its “meaning”

- $IDF(w) = \log \left[\frac{N}{n_w} \right] + 1$
 - where $N = \# \text{ documents}$, n_w is $\# \text{ documents containing } w$
 - Intuition: words appearing in many documents are generally not very informative (e.g., “the”)

- $\text{TFIDF: contribution of a term is product of quantities:}$
 $TFIDF(w) = TF(w) \times IDF(w)$
Using TFIDF to Measure Similarity

- Consider each document as a vector:

 dog compute window ...

 Doc. 1 = < 3.2, 0, 1.2, ... >
 Doc. 2 = < 0, 2.1, 5.4, ... >
 Doc. 3 = < 0, 1.7, 0, ... >

- Vectors are constructed such that

 o Each dimension of vector represents a term w_i
 o Each entry of vector has value: $\text{TFIDF}(w_i)$
 o Normalize the vectors to unit length (Euclidean norm)

- Similarity of two texts is measured by the cosine between the TFIDF vectors of the documents/queries

 o $\text{Cosine} = \text{vector dot product}$
Determining Similarity of Short Text Snippets

- Many queries on the web are short (~2.5 words)
- For short text snippets, cosine is insufficient
- Cosine of term vectors for all following text pairs is 0:
 - “AI” “artificial intelligence”
 - “Kofi Annan” “UN Secretary-General”
 - “Eric Schmidt” “Google CEO”
 - “NASA” “space exploration”
 - “Larry Page” “Google founder”
- Should also identify unrelated concepts, even if high term overlap
 - “Larry Page” “web page”
Determining Contextual Similarity of Short Text

“… the meaning of a word is its use in the language”

~ Ludwig Wittgenstein

- For short text snippets, need to determine greater contextual meaning

- Insight: leverage huge quantity of web information!

- Approach: Expand short text snippet into vector with additional context terms
 - Find terms that co-occur on web with terms in text snippet to determine contextual vector
 - Similar to “query expansion” in Information Retrieval
Leverage the Web to Determine Similarity

• Let \(x \) and \(y \) be two short text snippets
• Want to define a function \(f(x, y) \) that measures "semantic" similarity between \(x \) and \(y \)
• Define "query expansion" of text \(x \), \(\text{QE}(x) \), as follows:
 o Issue \(x \) as query to search engine (oh, say, Google…)
 o Let \(R \) be retrieved set of \(N \) documents: \(\{D_1, \ldots, D_N\} \)
 o Compute TFIDF vector \(V_i \) for each document \(D_i \in R \)
 o Compute \(\text{QE}(x) \) as average (centroid) of all vectors \(V_i \)
• Define \(f(x, y) = \text{QE}(x) \bowtie \text{QE}(y) \)
How Well Does This Work?

- Recall previous text pairs: \(f(x,y) \) Cosine

 ("AI", "artificial intelligence") 0.831 0.000
 ("Kofi Annan", "UN Secretary-General") 0.825 0.000
 ("Eric Schmidt", "Google CEO") 0.845 0.000
 ("NASA", "space exploration") 0.691 0.000
 ("Larry Page", "Google founder") 0.770 0.000
 ("Larry Page", "web page") 0.123 0.500

- Consider multi-faceted term "Java":

 ("Java island", "Indonesia") 0.454 0.000
 ("Java programming", "Indonesia") 0.020 0.000
 ("Java programming", "applet development") 0.563 0.000
More Info

- Sandeepan Banerjee works on Google’s Infrastructure (Crawling, Indexing, Storage, Map/Reduce, Video, International projects, …)
- Send follow-up questions to sandeepan@google.com